
STOCHASTIC ESTIMATION AND CONTROL OF QUEUES WITHIN A

COMPUTER NETWORK

THESIS

Nathan C. Stuckey, CAPTAIN, USAF

AFIT/GE/ENG/07-24

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not re�ect the o¢ cial

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GE/ENG/07-24

STOCHASTIC ESTIMATION AND CONTROL OF QUEUES WITHIN A

COMPUTER NETWORK

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Ful�llment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Nathan C. Stuckey, B.S.E.E

CAPTAIN, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/07-24

Abstract

An extended Kalman �lter is used to estimate size and packet arrival rate of network

queues. These estimates are used by an LQG steady state linear perturbation PI controller

to regulate queue size within a computer network. This research presents the derivation

of the transient queue behavior for a system with Poisson tra¢ c and exponential service

times. This result is then validated for ideal tra¢ c using a network simulated in OPNET.

A more complex OPNET model is then used to test the adequacy of the transient queue

size model when non-Poisson tra¢ c is combined. The extended Kalman �lter theory is

presented and a network state estimator is designed using the transient queue behavior

model. The equations needed for the LQG synthesis of a steady state linear perturbation

PI controller are presented. These equations are used to develop a network queue controller

based on the transient queue model. The performance of the network state estimator and

network queue controller was investigated and shown to provide improved control when

compared to other simplistic control algorithms.

iii

Table of Contents

Page

Abstract . iii

List of Figures . vi

List of Tables . x

I. Introduction . 1-1

II. Literature Review . 2-1

2.1 Introduction . 2-1

2.2 Network Tomography . 2-1

2.2.1 Network Tomography Background 2-1

2.2.2 Kalman Filter Based Network Tomography Examples 2-3

2.3 Background TCP . 2-5

2.4 Congestion Control with Lossy Data Links 2-13

2.4.1 Congestion Control Issue 2-13

2.4.2 TCP Modi�cations 2-13

2.5 Summary . 2-16

III. Methodology . 3-1

3.1 Introduction . 3-1

3.2 Model Development . 3-1

3.3 Estimation and Control Theory 3-5

3.3.1 Extended Kalman Filter Theory 3-5

3.3.2 Nonlinear Stochastic Controller Theory 3-8

3.4 Design of Network Estimator and Controller 3-12

3.4.1 Design of Network State Estimator 3-12

iv

Page

3.4.2 Design of Network Queue Controller 3-14

3.5 Summary . 3-16

IV. Results . 4-1

4.1 Model Validation . 4-1

4.1.1 Simple Queue Results 4-1

4.1.2 Detailed Network Model with Ideal Tra¢ c 4-4

4.1.3 Mixed Tra¢ c . 4-9

4.1.4 Model Validation Summary 4-11

4.2 Network Estimator Performance 4-15

4.2.1 Extended Kalman Filter Validation 4-15

4.2.2 Integrated Network Estimator 4-20

4.3 Simple Network Queue Controller 4-29

4.4 Summary . 4-36

V. Conclusions . 5-1

5.1 Contributions . 5-1

5.2 Recommendations . 5-2

Appendix A. Interfacing MATLAB with OPNET A-1

A.1 Instructions . A-1

A.2 Example Function . A-3

Bibliography . BIB-1

Vita . VITA-1

v

List of Figures

Figure Page

1.1 Representative battle�eld network [2] 1-2

1.2 Controlled system con�guration, from Maybeck [18] 1-3

1.3 Overall structure of LQG controller, from Maybeck [18] 1-4

2.1 Typical Kalman �lter application, from Maybeck [16] 2-3

2.2 Stop-and-wait and pipelined sending, from Kurose and Ross [13] . . 2-7

2.3 Dividing �le data into TCP segments, from Kurose and Ross [13] . 2-7

2.4 Sequence and acknowledgement numbers for a simple Telnet applica-

tion over TCP, , from Kurose and Ross [13] 2-8

2.5 Retransmission due to a lost acknowledgment, from Kurose and Ross

[13] . 2-9

2.6 A cumulative acknowledgment avoids retransmission of the �rst seg-

ment, from Kurose and Ross [13] . 2-10

2.7 Additive-increase, multiplicative-decrease congestion control, from Kurose

and Ross [13] . 2-12

2.8 Evolution of TCP�s congestion window (Tahoe and Reno), from Kurose

and Ross [13] . 2-13

4.1 The theoretical expected queue size is shown for a utilization of .85

and a service rate of 5.88 packets/second 4-2

4.2 OPNET model of the simple queuing system. 4-2

4.3 The number of packets contained in the queue is shown for a single

simulation run of the simple queue model with a utilization of .85 and

service rate of 5.88 packets/second. 4-3

4.4 Eleven-run Monte Carlo results obtained from the simple queue model

with a utilization of .85 and a service rate of 5.88 packets/second. . 4-4

4.5 OPNET model of the detailed queuing network. 4-5

vi

Figure Page

4.6 The top graph displays the average number of packets sent by the cus-

tom application and the bottom graph displays the number of packets

received by router 1. 4-6

4.7 Comparison between tra¢ c sent by the application and total tra¢ c

received by router 1. 4-6

4.8 Router 1 central queue size in packets, 85% loaded, eleven-run Monte

Carlo analysis. 4-7

4.9 Router 1 central queue size in bytes, 85% loaded, eleven-run Monte

Carlo analysis. 4-7

4.10 Router 2 central queue size in packets, 85% loaded, eleven-run Monte

Carlo analysis. 4-8

4.11 The theoretical expected queue size is shown for an utilization of .50

and a service rate of 10 packets/second 4-9

4.12 Router 1 central queue size in packets, 50% loaded, eleven-run Monte

Carlo analysis. 4-9

4.13 OPNET model of the mixed tra¢ c network. 4-10

4.14 Tra¢ c received in packets/second by router 1 from each incoming link. 4-12

4.15 Tra¢ c received in bits/second by router 1 from each incoming link. 4-13

4.16 The theoretical expected queue size is shown for an utilization of .85

and a service rate of 12.4 packets/second 4-14

4.17 Router 1 central queue size in packets, 85% loaded, eleven-run Monte

Carlo analysis. 4-14

4.18 Filter error statics corresponding to the queue size state variable x1 4-16

4.19 Estimate of queue size in packets overlaid on the actual queue size

values, 10 second sample period, grey line: actual queue size, overlaid

black dashed line: Kalman �lter estimate 4-17

4.20 Average packet size in the queue 4-17

4.21 Histogram of average packet size in the queue 4-18

4.22 Estimate of queue size in bytes overlaid on the actual queue size values,

10 second sample period, grey line: actual queue size, overlaid black

dashed line: Kalman �lter estimate 4-19

vii

Figure Page

4.23 Estimate of queue size in packets overlaid on the actual queue size

values, 100 second sample period, grey line: actual queue size, overlaid

black dashed line: Kalman �lter estimate 4-19

4.24 Estimate of queue size in bytes overlaid on the actual queue size values,

100 second sample period, grey line: actual queue size, overlaid black

dashed line: Kalman �lter estimate 4-20

4.25 Prediction of queue size in packets overlaid on the actual queue size

values, 100 second sample period, grey line: actual queue size, overlaid

black dashed line: Kalman �lter estimate 4-21

4.26 Integrated network estimator model 4-22

4.27 Modi�ed router model . 4-22

4.28 Modi�ed workstation model . 4-24

4.29 Estimate of queue size by Client 1 overlaid on the actual queue size

values, background tra¢ c enabled, R = 1, grey line: actual queue size,

overlaid black line: Kalman �lter estimate 4-26

4.30 Estimate of queue size by Client 1 overlaid on the actual queue size

values, background tra¢ c enabled, R = 1000, grey line: actual queue

size, overlaid black line: Kalman �lter estimate 4-26

4.31 Actual queue size, no background tra¢ c 4-27

4.32 Estimate of queue size by Client 1, no background tra¢ c, R = 1 . . 4-27

4.33 Estimate of queue size by Client 1, no background tra¢ c, R = 1 . . 4-28

4.34 Simple controller model . 4-30

4.35 Simple network queue controller results, yd = 3:125; X11 = 1, X22 =

1, X33 = 1, and U = 1000, 30-run Monte Carlo analysis, black line:

mean, gray lines: mean plus or minus one standard deviation 4-32

4.36 Simple network queue controller results, yd = 3:125; X11 = 1, X22 =

100, X33 = 1, and U = 1000, 30-run Monte Carlo analysis, black line:

mean, gray lines: mean plus or minus one standard deviation 4-33

4.37 Simple network queue controller results, yd = 3:125; X11 = 1, X22 =

1, X33 = 1, and U = 1, 30-run Monte Carlo analysis, black line: mean,

gray lines: mean plus or minus one standard deviation 4-34

viii

Figure Page

4.38 Simple network queue controller results, yd = 53; X11 = 1, X22 =

1, X33 = 1, and U = 1000, 30-run Monte Carlo analysis, black line:

mean, gray lines: mean plus or minus one standard deviation 4-35

ix

List of Tables

Table Page

4.1 Tra¢ c Type Generated By Each Client 4-11

4.2 Background tra¢ c . 4-25

x

STOCHASTIC ESTIMATION AND CONTROL OF QUEUES WITHIN A

COMPUTER NETWORK

I. Introduction

While the current routing and congestion control algorithms in use today may be

su¢ cient for networks with a relatively static topology, these algorithms may not be suf-

�cient for the dynamically changing networks that will be found on the battle�eld in the

near future. It is easy to envision many instances of rapidly changing networks in use on

the battle�eld as depicted in Figure 1.1. For example, a group of unmanned aerial vehi-

cles utilizing laser communications would exhibit quickly changing network characteristics.

Cloud interference would cause communication links to be broken constantly, and the rapid

movement of aircraft would create a network topology continuously in �ux. In these cases,

it is expected that dynamic routing and congestion control algorithms based on stochastic

estimation and control would provide superior results to more traditional algorithms.

The goal of this research is to improve the process of information delivery on computer

networks. Current mainstream routing and congestion control algorithms do not take

the probabilistic nature of computer networks into account. The past performance of a

computer network can be determined by observing measurements taken at various nodes of

the network. However, since these measurements cannot instantly be available at a central

node and these measurements will contain a certain amount of error, it is impossible

to know the current state of the network deterministically. If the stochastic nature of

a computer network can be modeled accurately, the current state of the network can

be estimated and the future state can be predicted. Being able to estimate the current

and future state of the network would allow for optimal routing and congestion control

algorithms to be developed. The goal of this research is to model a computer network

stochastically and to estimate and predict the metrics of interest. This information can

then be used to develop optimal network control algorithms.

1-1

Figure 1.1 Representative battle�eld network [2]

A network control algorithm can be developed based on a feedback controller. Figure

1.2 shows the basic structure of a feedback controller [18]. The goal of a feedback controller

is to provide the control u to the dynamic system such that the controlled variables yc

match the reference signal yd as closely as possible. Dynamics disturbances n also e¤ect

the dynamic system, usually in an undesirable way. In order to observe these disturbances,

measurements z of the dynamic system are taken and are fed back to the controller. These

measurements may correspond to the controlled variables, but in many cases not all of the

controlled variables will be measured. The control u is computed based on the feedback

the measurements provide about the state of the dynamic system. The measurements in

general are not perfect due to measurement corruptions nm.

The temperature control system of a building is an example of a feedback control

system. The dynamic system is the environment in the building and the controlled variable

is the temperature of the building. It is desired to maintain the temperature of the building

at the reference point set by the inhabitants of the building. The controller computes the

control inputs to be sent to the furnace, air conditioner, or air duct valves based on the

measurement of the temperature provided by a thermostat. Dynamics disturbances come

from a number of sources like the e¤ect of the outside temperature and heat added by

lighting.

1-2

Figure 1.2 Controlled system con�guration, from Maybeck [18]

A stochastic controller can be developed which takes the unknown quantities, dy-

namics disturbances and measurement corruptions into account to provide better control.

Figure 1.3 shows the basic structure of a stochastic LQG (Linear-Quadratic-Gaussian)

controller, to be discussed fully in Chapter III. The stochastic controller uses a Kalman

�lter to estimate the state of the system x̂ based on the measurements and previous control

inputs. Optimal control inputs u� are computed based on these state estimates and the

optimal controller gains.

A control system can be designed in which the dynamic system is a computer network.

The dynamic system includes components of the computer network, including computers,

routers, data links, servers, switches, and hubs. The controlled variables consist of the

performance metrics of interest such as network delay, data throughput, and congestion

levels. To provide the desired service, the network controller will compute various control

inputs, to include sending rates, routing table entries, optimal data packet sizes, etc.

Queues are one of the major components found in computer networks. In general,

computer networks can be thought of as queuing networks. To demonstrate the feasibility

of applying stochastic control theory to computer networks, a controller will be developed in

this document to regulate queue sizes by controlling the packet arrival rate to the network

queues. As part of this controller, a Kalman �lter will be developed to estimate the size of

a network queue and the total packet arrival rate to a network queue, given sample data

1-3

Figure 1.3 Overall structure of LQG controller, from Maybeck [18]

measurements of the queue size. One of the major research e¤orts needed to accomplish

the above vision is the development of the state space model for the computer network

of interest to be used by the Kalman �lter. The following chapter will further motivate

the need for stochastic control of computer networks and explore the e¤orts that have

been made in this largely unexplored �eld. In Chapter III, the derivation of the transient

network queue model is presented, stochastic estimation and control theory is presented,

and a network estimator and queue controller are designed. In Chapter IV, the transient

queue model is veri�ed and the performance of the network estimator and queue controller

are demonstrated. The thesis is concluded in Chapter V.

1-4

II. Literature Review

2.1 Introduction

For a computer network to function optimally, active feedback control mechanisms

are necessary. Various routing and �ow control algorithms control both the path informa-

tion travels and the rate at which it is sent over the network. Knowledge of the state of

the network is an essential element of the network control algorithms. Complex computer

networks require sophisticated algorithms to provide the advanced control needed to meet

the requirements of modern day applications optimally.

2.2 Network Tomography

2.2.1 Network Tomography Background. Network tomography is an emerging

�eld in which the state of the network is inferred based on measurements. In general,

a model is developed that su¢ ciently describes primary characteristics of the network.

Measurements are then taken that either directly or indirectly correspond to network

parameters. Finally, statistical inference techniques are then employed to estimate the

actual state of the network.

Traditionally, it has been viewed as infeasible to measure the state of the network

core directly [8]. Due to the complex and decentralized nature of computer networks, a

coordinated measurement framework is very challenging to implement. The cost of adding

new hardware coupled with the inter-operablity concerns of new hardware additions has

prevented a coherent measurement framework from existing in computer networks. In the

past, the added computational burden combined with the added bandwidth needed to

collect data from within the network has been considered impractical.

Because of the reasons presented, most network measurement schemes have existed

on the edges of the network instead of adding complexity to the network core. In these

cases, the state of the network core must be inferred from the information obtained at the

edges without coordination from the network core. These measurement either take the form

of passive tra¢ c measurements or active probe measurements [8]. Passive measurements

2-1

observe the existing local tra¢ c, while active probe measurements insert small amounts of

data into the network in order to gain knowledge of the network state.

As the bandwidth increases in modern computer networks, and the components of the

computer network have an increasing amount of computation resources, active measure-

ments of the network core are becoming possible. A notable example is explicit congestion

noti�cation (ECN), in which interior routers notify the senders on the edges of the net-

work of congestion [9]. Also, both the multiprotocol label switching research presented by

Anjali, Scoglio and Cavalcante de Oliverira [1] and the tra¢ c matrix tracking presented by

Soule, Salamatian, Nucci, and Taft [22], involve measurements taken within the network

core.

Once core measurements are obtained, statistical inference techniques are used to

analyze the measurement data in order to learn as much as possible about the state of the

network. Numerous statistical techniques have been used including complexity-reducing

hierarchical statistical models, moment- and likelihood-based estimation, expectation-

maximization and Markov chain Monte Carlo algorithms [8].

One statistical technique that has had limited use in the network tomography �eld is

the Kalman �lter. As seen in Figure 2.1, the Kalman �lter is fed measurements from the

system of interest and produces an estimate of the system state. Within the Kalman �lter,

the system is modeled as a set of di¤erential equations in the continuous-time case or as a

set of di¤erence equations in the case of a discrete-time system. The system model is used

to propagate the estimate of the state of the system forward in time until a measurement

is received. At this point, the system state attained from the measurement is compared

to the estimate of the system state and combined in a optimal manner. Neither the

estimate of the system nor the measurement can be trusted to be exact, because no model

is perfect and no measurement is without error. The Kalman �lter must know the amount

of uncertainty associated with both the system model and measurements. The Kalman

�lter uses this knowledge of uncertainty to calculate how much weight to give the system

state estimate versus the new information given by a measurement. Since the Kalman

�lter has knowledge of the system through the system model, a more exact estimate of the

system state can be deduced than from the measurements alone.

2-2

Figure 2.1 Typical Kalman �lter application, from Maybeck [16]

2.2.2 Kalman Filter Based Network Tomography Examples. Since network data

is transmitted in arbitrarily sized packets, the Kalman �lter has been used to estimate

the optimal packet size in a wireless network in order to maximize channel e¢ ciency [21].

In a wireless network, there is an overhead cost associated with sending each packet.

Therefore if the packet size is too small, e¢ ciency is decreased due to excessive overhead

cost. However, since a transmission error will cause the entire contents of a packet to

be lost, a large packet size will result in much data loss when an error in the wireless

channel occurs, and e¢ ciency is reduced. These two factors compete against each other,

and the optimal packet size is a function of the bit-error-rate. If a large number of errors

occur, small packets are desirable, but if there are fewer errors, larger packet sizes are

more e¢ cient. It was shown that a Kalman �lter was able to estimate the optimal packet

size with two orders of magnitude less estimation error than the more traditional moving

average method [21].

Bletsas also demonstrated that the Kalman �lter could be used for time synchroniza-

tion between a client and a server which has an accurate measurement of "true" time, for

example, by means of a Global Positioning System source [4]. Messages were transmitted

2-3

between the server and the client using the network time protocol (NTP) format. The

Kalman �lter was executed at the client side to provide the client with an accurate esti-

mate of "true" time using the NTP messages as input. When the queuing delay di¤erence

between two consecutive NTP messages was a Gaussian random variable, the Kalman �l-

tering method was found to be optimal. When the cross tra¢ c was modeled as self-similar

(long-range dependant), the Kalman �lter outperformed all other methods except for linear

programming. However, the Kalman �lter still performed very well and provided a good

trade-o¤ in terms of performance across varying tra¢ c scenarios.

Another use of the Kalman �lter within the network tomography �eld is as part of a

multiprotocol label switching (MPLS) network management technique in order to provide

guaranteed quality of service for multimedia tra¢ c [1]. In a multiprotocol label switching

network, �ows are set up between the source and destination by way of intermediate

routers. Flows are set up and torn down based on the tra¢ c demand. When a new

�ow is set up, a capacity allocation algorithm must reserve the necessary bandwidth from

the intermediate routers. The algorithm must observe the network and choose a network

path that has enough available bandwidth and also meets some kind of optimality criteria.

In the research presented by [1], a Kalman �lter is used to estimate the number of �ows

utilizing a path in order to discover the amount of extra capacity available. All of the �ows

in the network are assumed to have a constant data rate. The aggregate tra¢ c is measured

at the routers; and a Kalman �lter is used due to the presence of measurement noise. The

authors of the paper argue that the actual tra¢ c measurements are noisy because the data

rate must be deduced from sample data measurements and that even when the router can

be accessed to provide detailed information, noise is still present due to delays and errors

in the transfer of information. The Kalman �lter is used to reduce this error and provide

an accurate estimate of the number of �ows upon which the capacity allocation algorithm

can make decisions on how to route the �ows in the network.

Finally, Kalman �lters have been used to monitor origin-destination �ows in a large

network [22]. By measuring the amount of aggregate tra¢ c on each router in the net-

work, the authors were able to estimate the amount of tra¢ c �owing between any origin-

destination pair by way of a Kalman �lter, given that the topology and routing tables

2-4

of the network are known. Since the authors were using a Kalman �lter, it was possible

to predict future network behavior. Additionally, the Kalman �lter provided con�dence

intervals for the estimates and predictions. The authors were able to validate their re-

search on Sprint�s European IP backbone. The authors theorize that, due to the estimate

and predictive capability of the Kalman �lter along with its ability to provide con�dence

intervals, their setup would be useful for anomaly detection, including intruder threats and

hardware failure.

2.3 Background TCP

Flow control in computer networks is one area that can bene�t from advances in

network tomography. Flow control ensures that the sender does not overwhelm the receiver

or congest the network. To calculate the proper rate in which to send data on a computer

network, the �ow control algorithm must have some knowledge of the network state. Flow

control within computer networks is mainly handled by the transmission control protocol

(TCP). To better understand how TCP can bene�t from stochastic estimation and control

theory, a simple explanation of TCP based on Kurose and Ross�s "Computer Networking"

text [13] is presented below.

TCP provides a reliable, connection-oriented service to applications. The goal of

TCP is to provide a mechanism for applications to communicate with each other over

an unreliable computer network. TCP provides three main services to the application:

transport-layer multiplexing and demultiplexing, reliable data transfer, and congestion

control. Multiplexing is the process of getting data from the various applications at a

sender, placing the data into packets (or segments as TCP packets are commonly called),

and giving the segments to the computer network to deliver to the receiver. Once the data

segments arrive at the receiver, the information is demultiplexed and given to the correct

application. For more details into how this works, refer to [13, 24]. When an application

desires to communicate with another application at a remote location, TCP sets up a

connection between the two applications. This connection is bi-directional and can be

closed by either application when communications end. Again, for more information on

how TCP sets up and tears down connections, refer to [13,24].

2-5

To send segments over the network, TCP hands the segments to the Internet Pro-

tocol (IP). IP is responsible for delivering the segments over the internet to the correct

receiver. IP makes its "best e¤ort" to deliver the segments over an unreliable network;

however, no guarantees are made. Since IP cannot guarantee the delivery of segments,

TCP must implement a reliable delivery mechanism. This is achieved through the use of

acknowledgments (ACKs). As seen in Figure 2.2a, once the segment arrives at the receiver,

an ACK is sent in order to notify the sender that the segment has been received. In the

simplest case, the next segment would not be sent until the ACK is received (this method

of stop-and-wait is how the very early versions of TCP worked). In order to increase ef-

�ciency, pipelining is used in which multiple unacknowledged segments are allowed to be

in transit. This can be seen in Figure 2.2b in which three unacknowledged segments are

allowed to exist.

In order for multiple unacknowledged segments to exist in transit, it is necessary

to identify each individual segment in some manner to acknowledge which segments have

been received. This is accomplished through the use of sequence numbers, which uniquely

identify each segment in a TCP connection. TCP views the data stream between appli-

cations as a continuous ordered stream of bytes. Instead of assigning a sequential number

to each packet, the byte-stream number of the �rst byte in the segment is used as the

sequence number. This process is seen in Figure 2.3.

In the �gure, a 500,000 byte �le is divided into 1000 byte segments, which results in a

total of 500 segments. The �rst segment is assigned sequence number 0, the second segment

is assigned sequence number 1000, the third segment is assigned sequence number 2000,

and so on. A TCP connection is bi-directional i.e., data is sent both directions. When a

segment is acknowledged, the ACK will attempt to piggyback on a data packet traveling

in the opposite direction. The ACK contains the sequence number that the sender is now

ready to receive. This process is shown for a telnet session in Figure 2.4. The user types a

single letter "C", which is sent to Host B as a single byte ASCII letter. Notice that Host A

sends the single byte of data in a packet with a sequence number of 42, and that an ACK

is piggybacked on the data segment in order to let Host B know it is ready for sequence

number 79. In a telnet session, the received data is echoed back; so, the letter "C" is sent

2-6

Figure 2.2 Stop-and-wait and pipelined sending, from Kurose and Ross [13]

Figure 2.3 Dividing �le data into TCP segments, from Kurose and Ross [13]

2-7

Figure 2.4 Sequence and acknowledgement numbers for a simple Telnet application over
TCP, , from Kurose and Ross [13]

back to Host A with a sequence number of 79. Since the previous packet contained one

byte of data, the ACK number is 43. Finally, Host A acknowledges that it received the

data from Host B. Notice that in this case the ACK does not piggyback a data segment.

When a data segment is sent, a timer is started. If the sender does not receive an

ACK for the segment after a certain amount of time, the timer expires and the segment is

resent. In order to pick the length of the timer, the round trip time (RTT) is estimated.

The RTT corresponds to the time from when the segment is sent to when the ACK is

received. The timer is set to the current estimate of RTT plus a bu¤er to insure that

the timer does not expire too early and unnecessarily resend a packet. Once the ACK is

received, the timer is deleted. For more information on how the RTT is estimated or how

the retransmission timer is calculated, refer to [13, 24]. In Figure 2.5, the retransmission

time is demonstrated; notice that a lost ACK can also result in a retransmission.

2-8

Figure 2.5 Retransmission due to a lost acknowledgment, from Kurose and Ross [13]

TCP uses cumulative acknowledgments, which means that TCP acknowledges up to

the �rst missing byte in the stream. For example, in Figure 2.3, if segments 0 and 1000 have

already been received and ACKed and then segment 3000 arrives, the ACK number sent

will be 2000. The sender will then resend segment 2000 and since segment 3000 has already

been received, the ACK number sent will be 4000 to avoid the unnecessary retransmission

of segment 3000. Cumulative acknowledgments can also help avoid the retransmission of

segments when the ACK has been lost in some cases, as seen if Figure 2.6. Since the

cumulative acknowledgement states that Host B is ready for byte 120, segment 92 is not

resent even though an ACK for that segment was not received. In addition to timeouts,

TCP can also detect the presence of a lost segment through duplicate acknowledgments.

Because of the pipelining feature discussed above, when a segment is lost, there are usually

2-9

Figure 2.6 A cumulative acknowledgment avoids retransmission of the �rst segment,
from Kurose and Ross [13]

other segments that arrive at the receiver shortly after the segment was lost. Because of

cumulative acknowledgements, multiple ACKs are received indicating that the receiver is

ready for the byte number associated with the missing packet. These duplicate acknowl-

edgements usually arrive much sooner than the timeout period; therefore, when a duplicate

acknowledgement arrives, the �rst segment that has not been ACKed is sent immediately.

TCP actually waits until the third duplicated ACK arrives to assume the segment is lost

and thus retransmit this segment. This helps avoid unnecessary transmissions in cases

in which segments arrive at the receiver slightly out of order. If a segment is actually

lost, a triple duplicate ACK will arrive quickly, since there are usually multiple segments

already in transit arriving shortly after the segment is lost. This process is known as fast

retransmit and allows for lost segments to be resent much faster than if only timeouts were

used.

2-10

Another important feature of TCP is �ow control, which ensures the receiver is

not overwhelmed and the network is not congested. To ensure that the receiver is not

overwhelmed, the sender maintains a variable called the receive window, which is a measure

of the available space in the receiver�s bu¤er. The receiver advertises this value in the

segments that are sent to the sender. A variable that is maintained by the receiver is the

congestion window, which is used to throttle the sender in order prevent congestion in the

network. The send window corresponds to the number of unacknowledged packets allowed

in the network, and is calculated by taking the minimum of the receive and congestion

windows. In Figure 2.2, part A has a send window of 1, while part B has a send window

of 3. It can be seen that as the send window increases, the overall send rate increases.

To understand how TCP handles congestion control, assume that the receive window

is large enough to be ignored and that the number of unacknowledged packets in the net-

work equals the congestion window. In this case, the congestion window also corresponds

to the number of packets sent during each round trip time (RTT). The TCP congestion

control algorithm has three main components which are discussed below: additive-increase

multiplicative-decrease, slow start, and reaction to timeout events.

When networks become congested, they begin to lose packets due to over�owing

queues. Therefore, when a loss event is detected possibly indicating congestion, the con-

gestion window is lowered. When a triple duplicate ACK arrives indicating congestion, the

congestion window is cut in half, which reduces the sending rate by a factor of two. When

segment loss is not being detected, the congestion window is increased by one segment every

RTT. This process is known as additive-increase, multiplicative-decrease. This process is

shown in Figure 2.7. This saw-tooth pattern is representative of a TCP connection dur-

ing normal operation. The sending rate is linearly increased until a loss event happens,

at which point the sending rate is cut in half. The process starts all over again and the

sending rate is repeatedly increased until a loss event happens, followed by a reduction in

the congestion window.

When a connection begins, TCP enters the phase known as slow-start. This phase

of TCP is called slow-start because the sender begins sending at a slow rate; however, the

choice of terminology may seem to be a misnomer, since the goal of slow-start is to begin

2-11

Figure 2.7 Additive-increase, multiplicative-decrease congestion control, from Kurose
and Ross [13]

transmitting as fast as possible. Because it would take a long time for the sending rate to

reach an acceptable level if the sending rate were increased linearly, the TCP connection

begins by doubling its congestion window every RTT, resulting in an exponential increase.

The connection window exponentially increases until either a threshold is reached at which

point the TCP connection enters additive-increase, multiplicative-decrease, or until a loss

event is detected at which point the congestion window is cut in half and then additive-

increase, multiplicative-decrease takes over. This process is called slow-start since the

sender begins sending at a slow rate.

An early version of TCP called Tahoe [13] enters slow-start whenever a loss event is

indicated either by a timeout or duplicate ACK. After either event, the congestion window

is set to one and slow-start begins. The threshold for slow-start to end is set to half of the

previous congestion window. As discussed earlier, duplicate ACKs usually indicate when

a loss event occurs. A timeout is considered a much more serious event because, for this

to occur, all segments sent during a timeout period must have been lost. Since duplicate

ACKs are not as serious as timeouts, the approach taken by TCP Tahoe was found to be

too conservative. The newer version of TCP called Reno [13] only enters slow-start after

a time-out. When a triple duplicated ACK is detected, TCP Reno halves the congestion

window resulting in the saw-tooth pattern described above. Figure 2.8 shows the behavior

of both versions of TCP. Notice a triple duplicate ACK is detected at round 8. The less

2-12

Figure 2.8 Evolution of TCP�s congestion window (Tahoe and Reno), from Kurose and
Ross [13]

conservative approach taken by TCP Reno is called fast recovery. Versions of TCP based

on Reno are the primary versions of TCP in use today.

2.4 Congestion Control with Lossy Data Links

2.4.1 Congestion Control Issue. The congestion control algorithm used by TCP

Tahoe and TCP Reno assumes that the network links are very reliable and only lose data

in rare circumstances. These algorithms attribute all packet loss to congestion. This

assumption is no longer valid in wireless networks because packet loss is often due to bit-

error-rates in the wireless links. When packets are lost due to an error in the link, either

timeouts or duplicate ACKs occur just as if the packets were lost due to congestion. In

response, the congestion window is lowered, thus reducing the sending rate. Since there

is no congestion, this is not the correct action for TCP to take and the e¢ ciency of the

TCP connection is greatly reduced. There have been a number of e¤orts taken to create a

congestion control algorithm for TCP that can di¤erentiate between congestion and lossy

data links.

2.4.2 TCP Modi�cations. TCP Vegas [5] is a modi�cation to TCP Reno that

implements a di¤erent congestion control algorithm designed to prevent congestion rather

than respond to it. TCP Vegas is based on the premise that, as the congestion window is

2-13

increased, the sending rate also increases until the network begins to experience congestion.

Once congestion begins to exist, the sending rate begins to �atten out, even though the

congestion window is still increasing. At this point, the maximum throughput of the system

has been reached, and any additional packets sent are bu¤ered by the bottleneck router.

It is possible to calculate the expected sending rate that would result if there were no

congestion present on the network by:

Expected =WindowSize=BaseRTT

where WindowSize is the current congestion window size and BaseRTT is the round trip

time associated with no congestion. The expected sending rate is compared to the actual

sending rate and the di¤erence is taken such that

Diff = Expected�Actual

Two thresholds are chosen, � < �, which correspond to having too little and too much extra

data in the network, respectively. When Diff < �, the congestion window is increased

because the number of packets in transit is too small and the network is not being used

to its full capacity. Alternately, when Diff > �, the congestion window is decreased

because too much data is in transit, indicating that the network is being congested. The

congestion window is left alone when � � Diff � �. The authors state that the value for

� should correspond to one extra packet in the network and � should correspond to three

extra packets in the network. Also the slow-start mechanism is modi�ed in TCP Vegas.

In TCP Vegas, the congestion window experiences exponential growth every other RTT.

In the period between, the congestion window is kept constant in order for the congestion

detection to take place. The authors claim to achieve between 37% - 71% improvement in

throughput when compared to TCP Reno. This method of congestion detection improves

upon TCP Reno in the wireless setting, but is still not perfect. If packets are lost due

to lossy links, the actual sending rate is decreased, which in turn lowers the congestion

window. While the decrease in congestion window is not as dramatic as with TCP Reno,

it is still not the desired result. Also, TCP Vegas has been shown to have issues when the

2-14

return path is congested [10]. Since the ACKs for the sent data are delayed, the actual

sending rate is delayed, which also reduces the congestion window unnecessarily.

Another version of TCP called Westwood [7, 15] estimates bandwidth in order to

avoid the wireless congestion control issue presented above. TCP Westwood estimates

bandwidth by observing the rate in which ACKs are received. Since an ACK is sent when

a packet arrives, the arrival of an ACK indicates that a packet was successfully transmitted

to the receiver. The bandwidth is calculated by

bk = dk=�k

where dk is the size of the packet that was ACKed and �k is the time since the last

ACK. In order to obtain an accurate estimate of bandwidth, the bandwidth measurements

are low-pass �ltered, removing high-frequency noise. TCP Westwood functions similarly

to TCP Reno except when a triple duplicated ACK is detected: instead of cutting the

congestion window in half, it is set to the bandwidth estimate. Also, when a timeout

occurs, the slow start threshold is set to the bandwidth estimate as well, instead of half of

the current congestion window. TCP Westwood still increases linearly in order to "search"

for extra bandwidth. The authors claim that up to a 550% improvement has been observed

over TCP Reno. This bene�t is due to the fact that TCP Westwood is able to make an

informed decision on how much the congestion window should be reduced, unlike TCP

Reno which always reduces the congestion window in half. TCP Westwood was also found

to outperform TCP Vegas in all cases and outperformed TCP Vegas by more than a factor

of 3 in the case in which the return path was congested [10].

Explicit Congestion Noti�cation (ECN) is a mechanism to inform TCP of congestion

[9]. When routers begin to become congested, they set the ECN �eld in the packets that

travel through them. The decision to set the ECN �ag is based on a threshold queue

size value that is less than the total queue size. This allows the sender to be noti�ed of

congestion before loss events occur, since the ECN �ag is indicating when congestion is

present. In the simplest case, the ECN is treated as a triple duplicate ACK and can be

added to any of the TCP approaches above. TCP Jersey [14, 26] combines bandwidth

2-15

estimation with ECN. TCP Jersey estimates the bandwidth based on the rate in which

ACKs are received in a very similar manner to TCP Westwood. TCP Jersey also uses the

bandwidth estimate to set the congestion window. However, when a triple duplicate ACK

is detected, TCP Jersey checks to see if the ECN �ag is set. If the �ag is set, indicating

congestion, than the congestion window is reduced to the bandwidth estimate just like

TCP Westwood. If the �ag is not set, the congestion window is not changed, since the

absence of the ECN �ag indicates the segments were lost due to link failure. The added

information provided by the ECN �ag allows TCP Jersey to outperform TCP Westwood

by 17% in the scenario presented in [26].

2.5 Summary

In this chapter, an issue with TCP�s congestion control has been raised and a number

of approaches to solve this issue were described. The Kalman �lter was presented as an

alternative to traditional network state inference techniques and a few examples of the

use of Kalman �lters within the network tomography �eld were given. In the following

chapter, a Kalman �lter based network state estimator and network queue controller are

developed as an alternate solution to the TCP congestion control problem.

2-16

III. Methodology

3.1 Introduction

In this chapter, a stochastic control scheme is developed to control the sending rate to

a network queue based on the queue size. This controller is developed as an alternative to

the �ow control mechanisms described in the previous chapter. A system model describing

the transient behavior of a network queue is developed, which is needed to formulate both

the network state estimator and the network queue controller. The theory and design

are presented for both the Kalman �lter based network state estimator and the network

queue controller. The Kalman �lter estimates both the size of a network queue and the

packet arrival rate to the queue based on sampled queue size data. These estimates are fed

to the network queue controller, which uses the estimates to calculate the packet arrival

needed to maintain a desired queue size. The network queue controller is based on a Linear

Quadratic Gaussian (LQG) design.

3.2 Model Development

In order to develop the network control scheme described above, a dynamics model

describing the transient behavior of a queue is required. The queue is assumed to have

the Markov property, which allows the entire state description to be described by only the

current state and is also called the memoryless property [11]. In the case of a Markovian

or memoryless queue, the system state can be completely described by the current size of

the queue. The future behavior of the queue does not depend on the past, but only on the

current queue size and future inputs. The queue can be modeled as a continuous�parameter

Markov chain, which represents the state transition model of a Markovian system [20].

Starting with the Markov chain model for the queue, the equations describing the

transient behavior of the queue can be derived. A summary of the derivation presented by

Gross and Harris [11], which is an outline of the solution derived by Bailey in 1954 [3], is

presented below. The Chapman-Kolmogorov equation for a continuous-parameter Markov

chain is given by

pij(s; u) =
X
r

pir(s; t)prj(t; u) (3.1)

3-1

where pij(s; u) is the probability of transitioning from state i to state j in the time beginning

at s and ending at u. In Eq. (3.1), the transition from state i to state j can occur through

any other intermediate state r at time t. The choice of the intermediate time t is arbitrary

and holds true for all s < t < u. Parameters qi and qij will be de�ned as

qi(t)�t+ o(�t) = 1� pii(t; t+�t) = prob[change of state(t; t+�t)] (3.2)

qij(t)�t+ o(�t) = pij(t; t+�t) (3.3)

where o(�t) represents the higher order terms. To �rst order, qi(t) is the rate in which the

state changes from its current state and qij(t) is the rate at which the state changes from

state i to state j.

Given Eq. (3.1) and the de�nitions in Eq. (3.2) and Eq. (3.3), the forward Kol-

mogorov equation is found in [11] to be

@

@t
pij(s; t) = �qj(t)pij(s; t) +

X
r 6=j

pir(s; t)qrj(t) (3.4)

The forward Kolmogorov equation gives the rate of change of the probability associated

with going from state i to state j. By time t, the system can reach any state with some

associated probability. In the above equation, the summation term corresponds to the

weighted sum of the rates associated with transitioning from this intermediate state to

state j. The �rst term corresponds to the rate at which the state leaves state j given the

probability that the system has reached this state at time t. By assuming that the process

starts at s = 0 and is also homogeneous so that qi(t) = qi and qij(t) = qij , Eq. (3.4) can

be written as
dpij(0; t)

dt
= �qipij(0; t) +

X
r 6=j

pir(0; t)qrj (3.5)

Multiplying both sides by pi(0) and summing over all i gives

dpj(t)

dt
= �qjpj(t) +

X
r 6=j

pr(t)qrj (3.6)

3-2

Equation (3.6) calculates the rate of change of the probability associated with being in

state j.

Since the number of packets in a queue must be a integer, during an in�nitesimal time

period, the state can only change by a value of +1 or -1. This is known as a birth-death

process, which results in the following:

qn;n+1 = �n (3.7a)

qn;n�1 = �n (�n 6= 0) (3.7b)

qrj = 0 (elsewhere) (3.7c)

qn = �n + �n (q0 = �0) (3.7d)

where �n and �n traditionally represent the packet arrive rate and packet service rate,

respectively, for the integer queue size n. The arrival and service rates �n and �n are

not required to be an integer value. By substituting the above values into Eq. (3.6) and

denoting queue size with n instead of j, the following in�nite set of di¤erential equations

are obtained

dpn(t)

dt
= �(�n + �n)pn(t)

+�n�1pn�1(t) + �n+1pn+1(t) (n � 1) (3.8a)

dp0(t)

dt
= ��0p0(t) + �1p1(t) (n = 0) (3.8b)

By assuming that the arrival rates and service rates of the queue are independent of queue

size, we can omit subscripts on � and �;. allowing Eq. (3.8) to be written as

dpn(t)

dt
= �(�+ �)pn(t)

+�pn�1(t) + �pn+1(t) (n > 0) (3.9a)

dp0(t)

dt
= ��p0(t) + �p1(t) (n = 0) (3.9b)

n(0) = n0 (3.9c)

3-3

By using a combination of probability generating functions, partial di¤erential equations,

and Laplace transforms [11], the solution to the in�nite set of di¤erential equations given

by Eq. (3.9) can be found. Details are given in [11] and result in the following solution:

pn(t) = e
�(�+�)t

"�
�

�

�(n�n0)=2
In�n0

�
2t
p
��
�

+

�
�

�

�(n�n0�1)=2
In+n0+1

�
2t
p
��
�

(3.10)

+

�
1� �

�

��
�

�

�n 1X
j=n+n0+2

�
�

�

��j=2
Ij

�
2t
p
��
�35

for all n � 0;where I is the in�nite series for the modi�ed Bessel function of the �rst kind

given by

In(y) =
1X
k=0

(y=2)n+2k

k!(n+ k)!
(n > �1) (3.11)

Although Eq. (3.10) gives the probability density function (pdf) of queue size, it is

very complex and time consuming to calculate. Cantrell was able to simplify the calculation

using Marcum�s Q-functions [6]. The simpli�ed expression is given by

pn(t) = (1� �)�n

+ �n (�Qn+n0+2(�; �)�Qn+n0+1(�; �))

+

8>>><>>>:
Qn�n0+1(�; �)�Qn�n0(�; �) n > n0

Q1(�; �) +Q1(�; �)� 1 n = n0

Qn0�n+1(�; �)�Qn0�n(�; �) n < n0

(3.12)

where

� =
�

�
; � =

p
2��t; � =

p
2�t

and Q is given by

Qm(�; �) = exp

�
��

2 + �2

2

� 1X
k=1�m

�
�

�

�k
Ik(�; �) (3.13)

The expected value of the queue size can be calculated from Eq. (3.12) [6].

3-4

For n0 � 1

E [n(t)jn0] =
�

1� � (1�Qn0+2(�; �))

� 1

�n0(1� �) (1�Qn0+2(�; �)) + n0Qn0+1(�; �)

+ ��tQn0+2(�; �)� �tQn0(�; �) (3.14)

For n0 = 0

E [n(t)jn0 = 0] =
�

1� �(1�Q2(�; �))

� 1

1� � (1�Q2(�; �))

+ ��tQ1(�; �)� �t (1�Q2(�; �)) (3.15)

Equations (3.14) and (3.15) provide the expected value of the number of packets in the

queue as a function of time, which describes the transient behavior of the queue. These

two equations will be the basis of the system model used by the network state estimator

and network queue controller developed below.

3.3 Estimation and Control Theory

3.3.1 Extended Kalman Filter Theory. A Kalman �lter can be used to estimate

the state of the network accurately. Due to the fact that the network model is a nonlinear

discrete model with discrete measurements, a discrete-discrete extended Kalman �lter will

be used. The discrete-discrete extended Kalman �lter equations are given below. In the

extended Kalman �lter, a linear approximation of the nonlinear dynamics equation is used.

The nonlinear dynamics equation is relinearized about the current state estimate. For a

derivation of the extended Kalman �lter, see [17].

Equations (3.16) and (3.17) describe the discrete-time system model.

x(t i) = � (t i ; t i -1;x(t i -1)) +wd(t i) (3.16)

3-5

Let n be the number of states and m be the number of measurements. Then, x(ti) is an

n-dimensional vector describing the state of the system at time ti. The nonlinear dynamics

equation for the transition of the states of the system from time ti�1 to ti is �, which is also

an n-dimensional vector. The dynamics noise wd represents the unknown system dynamics

not included in � and is an n-dimensional function containing discrete-time white Gaussian

noise of zero mean and covariance kernel

E
�
wd(ti)wTd (tj)

	
=

8<: Qd ti = tj

0 ti 6= tj
(3.17)

where Qd is an n-by-n matrix representing the covariance of wd. The discrete-time mea-

surement model is given by Eqs. (3.18) and (3.19); linear measurements are assumed here

since that is su¢ cient for this research:

z(ti) = Hx(ti) + v(ti) (3.18)

where z is the m-dimensional measurement vector and H is the m-by-n measurement

matrix. Note that H is assumed constant for this development, but in general can be time

varying. The measurement noise, which represents the uncertainty of the measurement, is

an m-dimensional vector containing discrete-time white Gaussian noise of zero mean and

covariance kernel

E
�
v(ti)vT(tj)

	
=

8<: R ti = tj

0 ti 6= tj
(3.19)

where R is an m-by-m matrix representing the covariance of v. The dynamics noise wd

and measurement noise v are reasonably assumed to be independent. The linearized state

transition matrix, which is an n-by-n matrix, can be found by

�(t i ; t i -1) =
@�

@x

����
x=�x(t+i�1)

(3.20)

3-6

where �x(t+i�1) is the state estimate provided by the Kalman �lter at time ti�1 after the

measurement update. From Eq. (3.20), the elements of � are calculated by

�ij(t i ; t i -1) =
@�i
@xj

����
x=�x(t+i�1)

(3.21)

Since � is not continuous, Eq. (3.21) must be approximated by replacing the partial

derivative with a two-sided di¤erence equation. For example, �11 is calculated by

�11 =
@�1
@x1

����
x=�x(t+i�1)

� �1

2666666666664
x+

2666666666664

�x1

0
...

0

3777777777775

3777777777775
��1

2666666666664
x�

2666666666664

�x1

0
...

0

3777777777775

3777777777775
2�x1

��������������
x=�x(t+

i�1)

(3.22)

where�x1 is a small perturbation in x1. The value of�x must be chosen small enough such

that the di¤erence equation will give an accurate approximation to the partial derivative,

but not so small that numerical precision di¢ culties occur.

The Kalman �lter consists of two major steps: the time propagation step and the

measurement update step. In the following equations, the superscript - denotes before the

measurement update, and the superscript + denotes after the measurement update. In

the time propagation step, the estimate �x and covariance P are propagated from ti�1 to

ti by

�x(t�i) = �
�
t i ; t i -1;�x(t+i -1)

�
(3.23)

P(t�i) = �(t i ; t i -1)P(t
+
i -1)�

T(t i ; t i -1) +Qd (3.24)

where P is an n-by-n matrix. In the update step, the measurement is incorporated into

the estimate by

K(ti) = P(t�i)H
T �HP(t�i)HT +R

��1
(3.25)

�x(t+i) = �x(t
�
i) +K(ti)

�
z(ti)�H�x(t�i)

�
(3.26)

3-7

P(t+i) = P(t
�
i)�K(ti)HP(t

�
i) (3.27)

where the Kalman �lter gain K is an n�by�m matrix.

3.3.2 Nonlinear Stochastic Controller Theory. In order to regulate the network

queues, a controller is needed. Since the network model is a discrete-time nonlinear model,

a discrete-time nonlinear stochastic controller will be designed. Speci�cally, a controller will

be used to provide �ow control in a computer network in lieu of the techniques discussed

in Section 2.4.2. The controller will be used to regulate the queue size about a chosen

setpoint by controlling the sending rate to the queue.

In the linear case, the certainty equivalence principle states that cascading the opti-

mal estimator with the deterministic optimal controller produces an optimal design [18].

In other words, the Kalman �lter and deterministic full-state controller can be designed

independently of each other and the result would still be optimal. Therefore, in the linear

case, the optimal stochastic controller can be designed with the assumption that x(ti) is

perfectly known and that there is no dynamic noise wd(ti) or measurement noise v(ti).

Unfortunately, the certainty equivalence principle does not extend to the nonlinear case.

However, in order to design a controller in a feasible manner, simplifying assumptions will

be made resulting in a suboptimal controller. The assumed certainty equivalence design

technique will be used in which the controller will be designed as if the certainty equiva-

lence principle could be extended to the nonlinear case. As long as the estimate of x(ti)

produced by the Kalman �lter is good representation of the actual system state, the as-

sumed certainty equivalence design is su¢ cient in most cases. For the reasons presented

above, a deterministic nonlinear controller will be presented.

Dynamic programming may be used to design an optimal deterministic nonlinear

controller; however, due to the complexity required, it is desirable to use a di¤erent sub-

optimal synthesis technique. For this reason, a linear perturbation control law is used in

order to exploit the systematic nature of the Liner Quadratic Gaussian (LQG) design. In

addition to linearizing the system model, the controller is simpli�ed further by implement-

ing a steady state constant gain control law. The selection of steady state constant gains

3-8

simplify the synthesis of the controller and allow the controller gains to be precomputed,

reducing the computational burden.

In order to achieve type-1 deterministic control in which a desired setpoint is main-

tained with zero steady state error, a proportional-plus-integral (PI) controller is used.

In this section, the equations needed for the LQG synthesis of a steady state linear per-

turbation PI controller are presented. For a derivation of these equations, see [18]. The

description of the system to be controlled is given by

x(ti+1) = � (ti+1; ti;x(ti);u(ti)) (3.28a)

yc(ti) = c[x(ti);u(ti)] (3.28b)

Equation (3.28a) is the deterministic version of Eq. (3.16), where � also depends on the

output of the controller u(ti): The controlled variables yc(ti) are related to the states and

controller inputs by Eq. (3.28b).

In order use LQG synthesis, the system model must be linearized. It is chosen to

linearize about the equilibrium solution, which is found by

x(ti+1) = x(ti) = x0 = � (ti+1; ti;x0;u0) (3.29a)

yc0 = yd = c[x0;u0] (3.29b)

where yd is the desired setpoint of the system. The solution is represented as

x0(yd) = x0 (3.30a)

u0(yd) = u0 (3.30b)

which are functions of the setpoint yd. Therefore, a di¤erent controller must be computed

for each setpoint. The linear time-invariant perturbation system model is given by

�x(ti+1) = ��x(ti) +Bd�u(ti) (3.31a)

�yc(ti) = C�x(ti) +Dy�u(ti) (3.31b)

3-9

where

�x(ti) = x(ti)� x0; x0 = x0(yd) (3.32)

�u(ti) = u(ti)� u0; u0 = u0(yd) (3.33)

�yc(ti) = yc(ti)� yc0; yc0 = yd (3.34)

The matrices that de�ne the perturbation system are found by evaluating partials of �

and c at the equilibrium values:

� =
@�

@x

����
x=x0;u=u0

Bd =
@�

@u

����
x=x0;u=u0

C =
@c

@x

����
x=x0;u=u0

Dy =
@c

@u

����
x=x0;u=u0

(3.35)

In order to achieve the type-1 control described above, a pseudointegral state �q is

created by summing the regulation error:

�q(ti+1) = �q(ti) + �yc(ti) (3.36)

This state is augmented to the system model given by Eq. (3.31a) to become

24�x(ti+1)
�q(ti+1)

35 =
24� 0

C I

3524�x(ti)
�q(ti)

35+
24Bd
Dy

35 �u(ti) (3.37)

The state transition matrix � and input matrix Bd of the augmented system are

�Aug =

24� 0

C I

35 ; BdAug =

24Bd
Dy

35 (3.38)

3-10

The optimal controller is found by minimizing the cost function given by

J =
NX
i=0

8>>>><>>>>:
1

2

26664
�x(ti)

�q(ti)

�u(ti)

37775
T 26664
X11 X12 S1

XT12 X22 S2

ST1 ST2 U

37775
26664
�x(ti)

�q(ti)

�u(ti)

37775
9>>>>=>>>>;

+
1

2

24�x(tN+1)
�q(tN+1)

35T 24Xf11 Xf12

XTf12 Xf22

3524�x(tN+1)
�q(tN+1)

35 (3.39)

where X is the state weighting matrix, Xf is the �nal state weighting matrix, U is the

control weighting matrix, and S is the cross-term weighting matrix. These weighting

matrices are the tuning parameters for the controller and are adjusted until the desired

performance is achieved. The incremental form of the steady state control law which

minimizes Eq. (3.39) is

u�(ti) = u
�(ti�1)� �G�

c1[x(ti)� x(ti�1)]

+ �G�
c2 fyd(ti�1)� c [x(ti�1);u(ti�1)]g

+E [yd(ti)� yd(ti�1)] (3.40)

where �G�
c =

h
�G�
c1

�G�
c2

i
is found by solving the discrete-time algebraic Riccati equation

given by

�G�
c =

h
U+BTdAug

�KcBdAug

i�1 h
BTdAug

�Kc�Aug + S
T
i

(3.41a)

�Kc = X+�TAug �Kc�Aug �
h
BTdAug

�Kc�Aug + S
T
iT
�G�
c (3.41b)

and E is found by

E =
�
�G�
c1 � �G�

c2
�K�1
c22
�KT
c12

�
�12 +�22 (3.42)

where �12 and �22 are found by

x0 = �12yd (3.43a)

u0 = �22yd (3.43b)

3-11

3.4 Design of Network Estimator and Controller

3.4.1 Design of Network State Estimator. Using the extended Kalman �lter

theory and queueing network model developed earlier, a network state estimator can be

developed. The network state estimator will estimate the state of the network based on

measurement of the queue size. The state vector consists of two states.

x(ti) =

24 x1(ti)
x2(ti)

35 (3.44)

The �rst state x1(ti) corresponds to the queue size in packets and the second state x2(ti)

corresponds to the packet arrival rate to the queue, which was denoted as � earlier. To

de�ne the system and measurement models given by Eqs. (3.16)-(3.19), �, Qd, H, and R

must be found. The nonlinear dynamics equation associated with x1 is found from Eqs.

(3.14) and (3.15) to be

For �x1(t+i�1) � 1

�1 =
�

1� �

�
1�Q�x1(t+i�1)+2(�; �)

�
(3.45)

� 1

��x1(t
+
i�1)(1� �)

�
1�Q�x1(t+i�1)+2(�; �)

�
+ �x1(t+i�1)Q�x1(t+i�1)+1

(�; �)

+ ���tQ�x1(t+i�1)+2
(�; �)� ��tQ�x1(t+i�1)(�; �)

For �x1(t+i�1) = 0

�1 =
�

1� �(1�Q2(�; �)) (3.46)

� 1

1� � (1�Q2(�; �))

+ ���tQ1(�; �)� ��t (1�Q2(�; �))

where

�t = ti � ti�1; � =
�x2(t+i�1)

�
; � =

p
2���t; � =

p
2��t (3.47)

3-12

Due to the unknown nature of the packet arrival rate, the dynamics equation associated

with the second state is approximated as a Brownian motion process, which results in

�2 = �x2(t
+
i�1) (3.48)

The covariance of the dynamic noise vector wd is given by

Qd =

24Qd11 0

0 Qd22

35 (3.49)

where the variances of the dynamic noises associated with x1 and x2 are given by Qd11 and

Qd22 respectively. The two dynamic noises are treated as uncorrelated which results in a

diagonal Qd. Qd11 and Qd22 can be thought of as tuning parameters for the �lter. Their

values will be chosen in an iterative nature such that adequate performance is achieved

by the �lter. Since only measurements of the �rst state will be taken, the measurement

matrix is given by

H =
h
1 0

i
(3.50)

The measurement noise variance R is a scalar value and will be determined by the amount

of uncertainty contained in the queue size measurement. The elements of � are calculated

as in Eq. (3.22):

�11 =
�1

2664x+
2664 1
0

3775
3775��1

2664x�
2664 1
0

3775
3775

2

�������
x=�x(t+

i�1)

(3.51a)

�12 =
�1

2664x+
2664 0

x2
100

3775
3775��1

2664x�
2664 0

x2
100

3775
3775

2
x2
100

��������
x=�x(t+

i�1)

(3.51b)

�21 = 0; �22 = 1 (3.51c)

In the calculation of �11 , �x1 is chosen to be 1, since it is the smallest perturbation

allowed due to the fact that the queue size must be an integer. However, there is no

such integer requirement for the second state variable; therefore, in the calculation of �12,

3-13

�x2 was chosen to be x2
100 in order to provide a scaled perturbation that was two orders

of magnitude smaller than the state. All of the necessary components of the Extended

Kalman Filter equations given by Eqs. (3.23)-(3.27) have now been de�ned.

3.4.2 Design of Network Queue Controller. A controller can be designed based

on the nonlinear stochastic controller theory presented above. The state vector is the same

as Eq. (3.44); and its estimate x̂(ti) is provided by the extended Kalman �lter designed

above. The control input u(ti) is the sending rate from the source. The dynamics model

in Eq. (3.28a) is identical to Eq. (3.45) and Eq. (3.46), and the change in control input

�u(ti) is added to � in Eq. (3.47).

For �x1(t+i�1) � 1

�1 =
�

1� �

�
1�Q�x1(t+i�1)+2(�; �)

�
� 1

��x1(t
+
i�1)(1� �)

�
1�Q�x1(t+i�1)+2(�; �)

�
+ �x1(t+i�1)Q�x1(t+i�1)+1

(�; �)

+ ���tQ�x1(t+i�1)+2
(�; �)� ��tQ�x1(t+i�1)(�; �) (3.52)

For �x1(t+i�1) = 0

�1 =
�

1� �(1�Q2(�; �))

� 1

1� � (1�Q2(�; �))

+ ���tQ1(�; �)� ��t (1�Q2(�; �)) (3.53)

where

�t = ti � ti�1; � =
�x2(t+i�1) + �u(ti)

�
; � =

p
2���t; � =

p
2��t (3.54)

The controlled variable from Eq. (3.28b) is

yc(ti) = x1(ti) (3.55)

3-14

Equation (3.40) will be implemented in the actual controller as

u�(ti) = u�(ti�1) + �u�(ti) (3.56a)

�u�(ti) = �u�(ti�1)� �G�
c1[x̂(ti)� x̂(ti�1)]

+ Ḡ�c2 fyd(ti�1)� �x1(ti)g

+ E [yd(ti)� yd(ti�1)] (3.56b)

where yd(ti) is the setpoint of the queue in number of packets and the constant gains,

Ḡ�
c =

h
�G�
c1 Ḡ�c2

i
and E will be computed o ine before controller operation, where Ḡ�

c is

a 1-by-3 matrix, �G�
c1 is a 1-by-2 matrix, and Ḡ

�
c2 is a 1-by-1 matrix in this case. To �nd

the gains, the equilibrium solution is found by Eqs. (3.29a) and (3.29b) to be

�u0 = 0 (3.57a)

x0 =

24 yd
yd�
1+yd

35 (3.57b)

� is then found to be

�11 =
�1

2664x+
2664 1
0

3775
3775��1

2664x�
2664 1
0

3775
3775

2

�������
x=x0;�u0=0

(3.58a)

�12 =
�1

2664x+
2664 0

x2
100

3775
3775��1

2664x�
2664 0

x2
100

3775
3775

2
x2
100

��������
x=x0;�u0=0

(3.58b)

�21 = 0;�22 = 1 (3.58c)

Next, Bd is found to be

Bd1 =
�1

2664x+
2664 0

1
100

3775
3775��1

2664x�
2664 0

1
100

3775
3775

1
50

��������
x=x0;�u0=0

(3.59a)

Bd2 = 1 (3.59b)

3-15

and C and Dy are found to be

C =
h
1 0

i
(3.60)

Dy = 0; (3.61)

The weighting matrix X is chosen to be diagonal and is structured as

X =

26664
X11 0 0

0 X22 0

0 0 X33

37775 (3.62)

and S is chosen to be

S =

240
0

35 (3.63)

where X11, X22, X33, and U are tuning parameters for the controller and are chosen in

an iterative manner until the desired performance is obtained. The weights X11 and X22

correspond to the queue size and queue arrival rate respectively. As these values are

increased, the controller will place more importance to regulating these values toward the

nominal value. The tuning parameter X33 corresponds to the pseudointegral state �q: As

X33 is increased, the importance of minimizing regulation error is increased. Increasing X33

will increase the bandwidth of the system. The weight U corresponds to the importance of

minimizing control action. Increasing U will result in more liberal control inputs. �G�
c and

K̄c can now be found by solving the Riccati equation given by Eq. (3.41). Finally, E can

be found by Eqs. (3.42) and (3.43). All components of Eq. (3.40) have now been de�ned,

thus completing the controller design.

3.5 Summary

In this chapter, a transient queue model was developed. The general extended

Kalman �lter and an LQG steady state linear perturbation PI controller equations were

presented. Based on these equations and the transient queue model, a network state esti-

mator and network queue controller were designed. The performance of these designs are

explored in the following chapter.

3-16

IV. Results

4.1 Model Validation

This chapter presents the validation of the transient queue model developed in Section

3.2. The model is veri�ed under ideal conditions that exactly match the input tra¢ c

assumptions made during the development of the model. The network queueing model

is then veri�ed by a more detailed network simulation that involves complex models of

network hardware operating under ideal tra¢ c situations. More realistic tra¢ c is simulated

to validate the queue model further. The performance of the two-state extended Kalman

�lter network estimator developed in Section 3.4.1 is demonstrated and the LQG steady

state linear perturbation PI controller developed in Section 3.4.2 is shown regulating queue

sizes.

4.1.1 Simple Queue Results. The analytical model given by Equations (3.14) and

(3.15) were modeled in MATLAB, version R2006a [25], and the provided Q function solver

was used to calculate the Q values. To validate the transient queue model , a utilization

of .85 was chosen to load the queue su¢ ciently in order to provide a reasonable dynamic

response. A sending rate of 5 packets/second was arbitrarily chosen as a reasonable sending

rate, resulting in a service rate of 5.88 packets/second. Figure 4.1 displays the results

obtained for a utilization � = :85 and a service rate of � = 5:88 packets/second. As a

check, the steady state result can be compared to the steady state queue size equation

given by [20]. The steady state value of 5.67 matches the value obtained from (4.1):

.85=(1� :85) = 5:67:

nsteady state =
�

1� � (4.1)

To validate the analytical model, the network simulation tool OPNET modeler ver-

sion 11.5 [19] was used to simulate a queuing network. First, a simple queuing model was

simulated to validate the analytical model under an ideal case. The simple OPNET queu-

ing model is shown in Fig 4.2. The standard OPNET source, queue, and sink models are

used to create the simple queueing model. This simple model consists of a simple source

generating Poisson tra¢ c with exponentially distributed packet sizes, which is then deliv-

4-1

Figure 4.1 The theoretical expected queue size is shown for a utilization of .85 and a
service rate of 5.88 packets/second

Figure 4.2 OPNET model of the simple queuing system.

4-2

Figure 4.3 The number of packets contained in the queue is shown for a single simulation
run of the simple queue model with a utilization of .85 and service rate of
5.88 packets/second.

ered to the queue. The queue services each bit of the received tra¢ c at a constant rate,

which due to the exponentially distributed packet sizes, results in an exponential service

rate. The packets are then delivered to the sink. The arrival rate was set arbitrarily to 5

packets/second,corresponding to a service rate of 5.88 packets/second. The mean packet

size is 1500 bytes. The service rate of the queue was set to 70,588 bits/second in order to

match the service rate of 5.88 packets/second with a utilization of .85 as shown in Figure

4.1.

Figure 4.3 displays the results obtained from a single run of the simple queue simu-

lation. The burstiness of the Poisson tra¢ c has a very apparent e¤ect on the queue size

and the results can vary greatly for di¤erent runs using di¤erent random seed values to

generate the Poisson tra¢ c. To compare the results obtained to the expected value results

shown in Figure 4.1 properly, a Monte Carlo analysis should be conducted using multiple

seed values. To compare typical queue behavior to the theoretical calculations, an eleven

run Monte Carlo analysis was performed. The mean and one standard deviation con�dence

bounds of the queue size are calculated from the eleven runs and are shown in Figure 4.4.

Due to the reasons above, all future queue size results shown in this section will be the

4-3

Figure 4.4 Eleven-run Monte Carlo results obtained from the simple queue model with
a utilization of .85 and a service rate of 5.88 packets/second.

result of the described Monte Carlo analysis. Notice that the mean value matches very

closely with the theoretical results shown in Figure 4.1. Also, notice the wide spread in

the con�dence bounds due to the large variance in the transient response from run to run.

Due to this wide variance in transient queue behavior, individual results will be

impossible to predict precisely; however, the average of many runs will closely match the

calculated expected value. The results obtained in this section validate that, under ideal

conditions, the expected value equations obtained earlier are correct.

4.1.2 Detailed Network Model with Ideal Tra¢ c. In the previous section, the

transient queue model was validated under ideal circumstances. In this section, a more

accurate computer network model is built in OPNET to verify that the transient queue

model is valid in an actual network. The detailed network model can be seen in Figure

4.5. To observe the e¤ect of cascading multiple routers, the network was modeled with two

workstations connected by two routers. Duplex point-to-point links are used to connect

the nodes. The standard OPNET models are used for the workstations and routers, and

the routers are modeled with a central processor. Data from the incoming links are sent

to a single queue located at the front end of the processor. The processed packets are

then sent to the outgoing links. Each outgoing link then contains a queue. The Routing

Information Protocol (RIP) is used to route tra¢ c.

4-4

Figure 4.5 OPNET model of the detailed queuing network.

A custom application was modeled in OPNET to recreate the tra¢ c �ow from the

previous section. The Tasks, Applications, and Pro�les blocks in Figure 4.5 were used to

model this custom application. The Link Wink block was not used in this experiment.

The tra¢ c was sent from client 1 to client 2 using the UDP transport protocol. As in the

previous case, Poisson tra¢ c was sent with a mean arrival rate of 5 packets/second and a

mean packet size of 1500 bytes. As can be seen in Figure 4.6, the custom application sends

5 packets/second as expected; however, router 1 receives between 6 and 8 packets/second.

This can be explained by the presence of small control packets being used by the network.

Small control packets are used in the network to perform various tasks including routing

and transmission control. Notice that in Figure 4.7, the volume of tra¢ c received by

router 1 in bytes is virtually identical to the tra¢ c sent by the application. While the

small control packets contribute to the overall number in the stream, due to their small

size, they do not contribute much to the overall volume sent in bytes.

The service rates of the routers are set such that the CPU�s are 85% utilized, cor-

responding to the theoretical calculation shown before in Figure 4.1. The links are set to

a capacity of 20 Mbits/sec, which is su¢ ciently high so that the only bottlenecks are the

central processor and corresponding queue in each router.

4-5

Figure 4.6 The top graph displays the average number of packets sent by the custom
application and the bottom graph displays the number of packets received by
router 1.

Figure 4.7 Comparison between tra¢ c sent by the application and total tra¢ c received
by router 1.

4-6

Figure 4.8 Router 1 central queue size in packets, 85% loaded, eleven-run Monte Carlo
analysis.

Figure 4.9 Router 1 central queue size in bytes, 85% loaded, eleven-run Monte Carlo
analysis.

The transient behavior of the central queue in router 1 is displayed in Figure 4.8.

Notice that the transient behavior of the queue resembles the calculated value in Figure

4.1 with the exception that it is shifted up by a couple of packets due to the presence of

the small control packets discussed earlier. Since the control packets are small, they do not

a¤ect the loading of the queue very much and as a result do not a¤ect the overall transient

behavior of the queue. However, while in the queue, the control packets are stuck between

the larger data packets, which increases the observed value by a few packets. One would

still expect the queue size in bytes to be dominated by the application tra¢ c. If this is the

case, then the steady state value of the queue size in bytes would be close to 5.67*1500 =

8505 bytes, which can be seen in Figure 4.9.

4-7

Figure 4.10 Router 2 central queue size in packets, 85% loaded, eleven-run Monte Carlo
analysis.

The transient response of the queue in the second router can be seen in Figure 4.10.

The behavior of the queue does not match the theoretical results obtained in Figure 4.1. In

the case of tandem queues, the Markovian nature of the system begins to fall apart. The

service rates of the queues are dependant on the packet sizes. Since computer networks

typically have a minimum packet size, the minimum allowable service time is non-zero

and the service rates are only approximately exponential. When the arrivals to a queue

are Poisson, the queue model developed still provides a good approximation of queue size

even though the service rate is not completely exponential. However, the presence of a

minimum allowable service time reduces the burstiness of the outgoing tra¢ c and the inter-

arrival time to the second queue is no longer strictly Poisson. This results in too many

assumptions being invalidated at the second queue and the model developed is no longer

adequate. In most cases, the output of the �rst queue will be mixed with other tra¢ c

before arriving at the second queue, which restores the Poisson nature of the tra¢ c and

allows the model to again be a good approximation.

To see if the transient behavior of the queue can also be predicted for a di¤erent queue

utilization, the utilization was reduced to 50%, corresponding to a router service rate of

125,000 bits per second. A utilization of 50% was chosen to provide a noticeable change

when compared to a utilization of 85% without reducing the loading to a point at which

the nonlinear dynamics become impossible to observe. The theoretical behavior calculated

by Equation (3.15) is shown in Figure 4.11. The results of the OPNET simulation are

4-8

Figure 4.11 The theoretical expected queue size is shown for an utilization of .50 and a
service rate of 10 packets/second

Figure 4.12 Router 1 central queue size in packets, 50% loaded, eleven-run Monte Carlo
analysis.

shown in Figure 4.12.

Notice that the transient behavior matches the theoretical result including the very

fast rise time. The small control packets have less of an e¤ect on queue size due to the small

size of the queue. The control packets are infrequently trapped by larger data packets.

4.1.3 Mixed Tra¢ c. It was seen that, as long as the tra¢ c can be adequately ap-

proximated as Poisson, the theoretical transient model provides good results. The Jackson

theory states that, when a su¢ cient number of non-Poisson tra¢ c streams are combined,

they tend to become Poisson [11]. To test this theory, an OPNET model was generated

4-9

Figure 4.13 OPNET model of the mixed tra¢ c network.

with multiple non-Poisson tra¢ c �ows feeding into a router. This network can be seen

in Figure 4.13. Again the standard OPNET workstation and router models were used.

The standard application models included with OPNET were used to generate tra¢ c. Un-

like the earlier scenarios, the tra¢ c is no longer modeled by a single distribution. In this

section, each aspect of the application is modeled. For example, in the FTP application

model, the PUT and GET messages are modeled along with the data tra¢ c, all of which

are sent using a TCP model. Therefore, at any moment in time, the tra¢ c distributions

are dependent on many variables including the performance of the transport and routing

protocols in the network. Table 4.1 shows the application pro�les used by each worksta-

tion. Seven workstations were modeled to test if the model was valid for a relatively small

number of clients. A reasonable cross-section of various tra¢ c types was chosen to repre-

sent a diverse mix. Client 2, which is located in the lower right of the network in Figure

4.13, acted as a server to the other clients. TCP Reno was used by all of the workstations.

Again, the RIP routing algorithm was used by the routers.

To observe the results of mixing multiple tra¢ c streams, the queue behavior of router

1 is observed. The raw tra¢ c received by router 1 is shown in Figures 4.14 and 4.15. The

average number of bits/second received by all links is 60,985 and the average number of

4-10

Table 4.1 Tra¢ c Type Generated By Each Client
Client Tra¢ c Type
1 Heavy email, heavy database, and heavy FTP
2 Server to other clients
3 Image browsing
4 Heavy browsing, light email, and light database
5 Light browsing and medium database
6 Heavy FTP and heavy email
7 Medium FTP and heavy browsing

packets received is 10.56 packets/second. The service rate of router 1 was set to 71747

bits/second to correspond to a utilization of .85. The individual tra¢ c streams shown in

the data plots are non-Poisson.

The theoretical transient response calculated by Eq. (3.15) is shown in Figure 4.16.

The result obtained by the OPNET simulation in Figure 4.17 is very close to the theoretical

prediction. Notice that the standard deviation is greater in this section than in the previous

more ideal scenarios. This is because, unlike in the previous sections, the incoming tra¢ c is

only approximately Poisson. Since the mean value obtained from the Monte Carlo analysis

is very close to the theoretical, the transient queue model is still valid for this scenario;

however, to account for the greater uncertainty, the value of the dynamics noise covariance

Qd in Eq. (3.17) will have to be increased accordingly. This validates that the transient

queue model developed is adequate when the incoming tra¢ c to a queue is a combination

of multiple sources.

4.1.4 Model Validation Summary. In the above sections, the transient queue

model was validated for three scenarios of increasing complexity. The mean results of the

Monte Carlo analyses performed matched the theoretical results. However, due to the

random nature of the Poisson arrival process, the standard deviations given by the Monte

Carlo analyses can be signi�cant. Thankfully, the Kalman �lter takes into account the

unknown dynamics through a proper choice of Qd. The transient queue model provides

the Kalman �lter with the very import knowledge of the general trend describing the size

of the queue. The fact that these unknown dynamics occur, underscore why a Kalman

�lter is needed to provide adequate estimates and predictions of the state of the system.

4-11

Figure 4.14 Tra¢ c received in packets/second by router 1 from each incoming link.

4-12

Figure 4.15 Tra¢ c received in bits/second by router 1 from each incoming link.

4-13

Figure 4.16 The theoretical expected queue size is shown for an utilization of .85 and a
service rate of 12.4 packets/second

Figure 4.17 Router 1 central queue size in packets, 85% loaded, eleven-run Monte Carlo
analysis.

4-14

Long-range dependant (LRD) or self-similar tra¢ c has commanded a lot of interest

in the last decade [23]. It has been observed in varying degrees in many di¤erent scenarios

within computer networks. LRD tra¢ c is of concern because it does not exhibit long-term

smoothness. This leads to a tra¢ c source with increased burstiness over long time scales

when compared to Poisson tra¢ c. Using a Poisson dynamics model to characterize LRD

tra¢ c over long time scales can result in an under-estimation of queue sizes. However, when

LRD tra¢ c is viewed at a su¢ ciently small scale it appears Poisson [12]. Therefore, the

dynamics model associated with Poisson arrivals proposed in this document is valid over

small time scales, allowing the model to be used as the basis of the Kalman �lter with the

understanding that the accuracy of the model decreases as the time scale increases. The

uncertainty introduced over time by the LRD behavior is represented by the Brownian

motion process describing the uncertainty associated with the dynamics model and is

characterized by Qd in the Kalman �lter equations.

4.2 Network Estimator Performance

4.2.1 Extended Kalman Filter Validation. The Extended Kalman Filter Eqs.

(3.23)-(3.27) were implemented in MATLAB version R2006a in order to validate the design

of the network estimator. The primary goal was to generate an accurate estimate of queue

size given noise-corrupted measurements. The measurement data was generated by the

mixed tra¢ c OPNET simulation described above. The number of packets contained in

the central queue of router 1 was sampled and the data �le was manually transferred to

MATLAB. Within MATLAB, a noise with a variance of R=10 was added to the sampled

data to simulate the measurement uncertainty that would be found in a real world network.

The primary source of measurement error within computer networks is due to the lack

of a global time reference. Since the time at which a measurement was taken in not

known exactly, the amount of measurement noise is directly related to the relative accuracy

of the clocks within network components. An R=10 was estimated to provide a rough

approximation of this measurement noise.

Initially, the sample rate was set to 10 seconds. To obtain an adequate estimate,

the �lter must be tuned properly. This is done by adjusting Qd in an iterative manner

4-15

Figure 4.18 Filter error statics corresponding to the queue size state variable x1

until the desired performance is achieved. To aid in this process, it is useful to plot the

�lter error and the �lter-computed two-sigma values of the error on the same plot for each

state variable. The �lter error is computed by subtracting the �lter estimate from the

actual value obtained from the OPNET simulation. The two-sigma values of the error are

obtained by taking the square root of the variance term corresponding to the state variable

of interest obtained from the �lter computed covariance matrix, and then multiplying by

two. The diagonal values of the Qd matrix are then adjusted until 95% of the �lter error

values fall within the two-sigma bound. An example for a well-tuned �lter is shown in

Figure 4.18. For a sample period of 10 seconds, a Qd =

2420 0

0 :01

35 was found to give
adequate performance. The estimate of queue size in packets is given in Figure 4.19. The

estimate is overlaid on the actual queue size value. The network estimator results shown

here are only single sample runs. It would be desirable to perform a Monte Carlo analysis

of the network estimator performance, however this was prohibitively di¢ cult in the time

given due to limitations in the network simulation tool. The simulation used a global

random seed value and any change in the simulation would result in totally di¤erent queue

sizes. Numerous performance runs have been completed and the results given are indicative

of the normal operation of the network estimator.

4-16

Figure 4.19 Estimate of queue size in packets overlaid on the actual queue size values,
10 second sample period, grey line: actual queue size, overlaid black dashed
line: Kalman �lter estimate

Figure 4.20 Average packet size in the queue

Notice that the estimate of queue size provided by the network estimator does a

very good job of following the actual queue size. It is impossible to predict the high

frequency behavior of the queue, so one can only hope to achieve an accurate track of the

low frequency behavior.

It is also desirable to estimate the queue size of the router in bytes. For this to be

achieved, the estimate of queue size in packets can be multiplied by the average packet

size contained in the queue. The average packet size in the queue during a simulation run

is shown in Figure 4.20. The average packet size changes rapidly and varies signi�cantly

4-17

Figure 4.21 Histogram of average packet size in the queue

between 40 and 1500 bytes. To gain a better understanding of the average packet size in the

queue, a histogram of the data is shown is Figure 4.21. With the exception of the tails on

either end, the distribution is almost Gaussian. This distribution can be explained by the

fact that almost all packets in the network are either full size data packets or small network

control packets. Sometimes the network queue contains only the small control packets or

the large data packets, which represent the tails of the distribution. The Gaussian-like

part of the distribution represents the di¤erent mixtures of large and small packets that

occur. The average packet size in the queue over all time was found to be 550 bytes. The

estimate of queue size in packets was multiplied by 550 bytes and compared to the actual

queue size in bytes in Figure 4.22. Using only a single value for the average packet size to

estimate the queue size in bytes worked very well. The estimate of the queue size in bytes

does a very good job of tracking the actual values, except near the end of the simulation

when the average packet size decreased below 550 bytes.

To see the e¤ect of reducing the sample rate, the simulation was repeated with a

sample period of 100 seconds. The iterative �lter tuning procedure described earlier was

conducted and Qd =

2430 0

0 :1

35 was found to give the best performance. The estimate
of the number of packets contained in the queue can be seen in Figure 4.23. Even at a

much reduced sample rate, the �lter estimates the queue size adequately. The queue size

estimate in bytes is shown in Figure 4.24 and also continues to be an adequate estimate

at the reduced sample rate.

4-18

Figure 4.22 Estimate of queue size in bytes overlaid on the actual queue size values, 10
second sample period, grey line: actual queue size, overlaid black dashed
line: Kalman �lter estimate

Figure 4.23 Estimate of queue size in packets overlaid on the actual queue size values,
100 second sample period, grey line: actual queue size, overlaid black dashed
line: Kalman �lter estimate

4-19

Figure 4.24 Estimate of queue size in bytes overlaid on the actual queue size values, 100
second sample period, grey line: actual queue size, overlaid black dashed
line: Kalman �lter estimate

Another advantage of the Kalman �lter is its predictive ability. The �x1(t�i) values,

which represent the time-propagated estimate of queue size before the measurement up-

date, are plotted in Figure 4.25. The prediction lags in a number of places due to the

very low sample rate. It is impossible of predict a sudden change in queue size without

measurements to indicate the changing behavior. While not perfect, the �lter is a better

predictor of queue size behavior 100 seconds into the future as compared to other meth-

ods. For instance, given measurements at 300 and 400 seconds, a linear interpolation would

have predicted a much less accurate value at 500 seconds than the Kalman �lter generates.

The prediction is also more accurate than performing a zero order hold on measurements

between sample times.

4.2.2 Integrated Network Estimator. The Kalman �lter validated above was

integrated into the OPNET simulations to demonstrate the operation of a network queue

estimator in a computer network. Since the Kalman �lter was implemented in MATLAB

and the network simulation was implemented in OPNET, a co-simulation interface was

developed between the two programs. OPNET was used as the primary program and

maintained control of the simulations. When Kalman �lter computations were needed, the

MATLAB functions were called by the OPNET simulation. A C application programing

4-20

Figure 4.25 Prediction of queue size in packets overlaid on the actual queue size values,
100 second sample period, grey line: actual queue size, overlaid black dashed
line: Kalman �lter estimate

interface (API) that allows the MATLAB engine to be called by C code is included with

the MATLAB software. Since OPNET models are constructed of C code, this API was

used to call MATLAB from within the OPNET models. For speci�cs on how to interface

the two programs, refer to Appendix A.

The integrated network estimator model is shown in Figure 4.26. The router and

workstations models are modi�ed versions of the models used in Sections 4.1.2 and 4.1.3.

The internal model of the router is shown in Figure 4.27. The IP block has been modi�ed

to observe the IP packets traveling through the router. Each IP packet is checked to see if it

contains a TCP packet. If the IP packet contains a TCP packet, the source and destination

IP address and the source and destination port numbers are recorded. These four pieces

of information uniquely identify a TCP stream. This packet identi�cation information is

sent to the queue size monitor block. The size of the central queue in the router is also

sent to the queue size monitor block from the IP block.

The queue size monitor block has been added to the router model. The queue size

monitor block contains the queue size monitor application. The function of the queue size

monitor application is to send the router queue size data to all of the senders that are

transmitting data through the queue. Each of these senders has a unique IP address. The

queue size monitor consists of a root process and a child process. The root process creates

4-21

Figure 4.26 Integrated network estimator model

Figure 4.27 Modi�ed router model

4-22

a child process for each unique IP address. The child process is responsible for sending the

queue size data to the IP address associated with it. When the root process receives the

packet identi�cation information, it checks the source IP address of the packet. If a child

process already exists for this IP address, the packet identi�cation information is passed

to the child process. If a child process does not exist for this IP address, one is created

and the packet identi�cation information is sent to the newly created child process.

When a child process is created, it registers itself with the Transport Protocol Adap-

tation Layer (TPAL). TPAL is the interface OPNET uses to communicate between the

application layer and the transport layer. A custom queue report packet is created by the

child process and contains two data �elds: queue size and sample time. The queue size

�eld contains the size of the queue in packets and the sample time �eld contains the time

at which the queue was sampled. The rate at which the child process sends these custom

queue report packets is governed by the queue size sample rate parameter and can be

varied by the user. Each individual child process is responsible for sending queue size data

to one sender. The child process keeps track of the sender�s individual TCP connections

travelling through the router. The individual TCP connections are identi�ed by the port

number. The individual TCP connections are tracked by creating a list containing the port

numbers corresponding to active TCP connections. The time of the last packet received

by the router for an individual port number is recorded as part of this list. When a child

process receives the packet identi�cation information from the root process, it checks to

see if the source port number is in the list. If it is in the list, the timestamp is updated, and

if the port number is not in the list, the port number is added along with the timestamp.

A port number is removed from the list if a packet from the corresponding TCP stream

has not been observed by a timeout period which is a parameter set by the user.

Before a packet is sent by a child process as governed by the queue size sample rate,

the port list is checked to see if any of the timestamps are older than the timeout period. If

this is the case, the ports are removed from the list. If after removing the applicable ports,

the list is empty, then the child process is destroyed. However, if the list still contains

ports denoting active connections, then the queue size data packet is created and passed to

4-23

Figure 4.28 Modi�ed workstation model

the TPAL interface, which sends the packet to the IP address corresponding to the child

process.

The workstations receive queue size data packets from the routers through which

their TCP connections pass. The modi�ed workstation model is shown in Figure 4.28.

The Kalman �lter block has been added. When the workstation receives a queue size

data packet, the TPAL interface forwards it to the Kalman �lter block. The Kalman �lter

block receives the queue size data packet and calls the Kalman �lter MATLAB code that

was validated in Section 4.2.1 through the co-simulation interface. The Kalman �lter code

processes the measurement data by executing the propagate and update steps given in

Section 3.3.1. The estimate of queue size and packet arrival rate is then passed back to

OPNET and recorded.

To test the integrated network estimator, Poisson background tra¢ c with exponen-

tially distributed packet sizes was sent from client 1 to client 2. The mean packet size of

the background tra¢ c was 550 bytes with the arrival rate shown in Table 4.2. An FTP

4-24

Table 4.2 Background tra¢ c
Time (seconds) Arrival rate to queue
0-900 45,000 bits/second
900-1100 30,000 bits/second
1100-1500 32,000 bits/second
1500-2000 44,000 bits/second

transfer was set up between clients 1 and 2 using the standard FTP application model

included in OPNET. Two 500 kilobyte �les are sent: one at 50 seconds and one at 1050

seconds. The queue size sample period was set at 1 second and the timeout period was

set to 2 minutes. Figure 4.29 shows the Kalman �lter estimate made by client 1 when Qd

=

2415 0

0 1

35 and R = 10. The actual queue size is shown in grey and the estimate of queue
size is overlaid in black. Notice that an estimate of the queue size is made by client 1 only

when client 1 is sending data through the queue. The �le transfers are completed at 150

and 1335 seconds, but the estimate of queue size is continued for another 120 seconds until

the timeout period expires. The estimate of queue size made by the Kalman �lter tracks

the actual queue size very closely.

In some cases, it is desirable to track the low frequency behavior of the queue.

This can be accomplished by increasing the R value, which places less weight on the

measurements and more weight on the transient queue model which does not include

the random high frequency behavior. To demonstrate the ability to track only the low

frequency behavior of the queue, the above experiment was repeated with an R value of

1000 and is shown in Figure 4.30. The network estimator was successful in tracking only

the low frequency behavior of the queue.

To demonstrate the ability to track low frequency behavior further, the above exper-

iment was repeated without background tra¢ c. The actual queue size is shown in Figure

4.31. To clarify the graph, the line is not drawn when the queue size changes. The actual

queue size is �uctuating between 2 and 8 packets rapidly. When R =1, the Kalman �lter

tracks the actual queue size accurately, as seen in Figure 4.32. Again, to clarify the graph,

only the discrete estimates are plotted. When R is increased to 250, only the low frequency

behavior of the queue is tracked as observed in Figure 4.33.

4-25

Figure 4.29 Estimate of queue size by Client 1 overlaid on the actual queue size values,
background tra¢ c enabled, R = 1, grey line: actual queue size, overlaid
black line: Kalman �lter estimate

Figure 4.30 Estimate of queue size by Client 1 overlaid on the actual queue size values,
background tra¢ c enabled, R = 1000, grey line: actual queue size, overlaid
black line: Kalman �lter estimate

4-26

Figure 4.31 Actual queue size, no background tra¢ c

Figure 4.32 Estimate of queue size by Client 1, no background tra¢ c, R = 1

4-27

Figure 4.33 Estimate of queue size by Client 1, no background tra¢ c, R = 1

4-28

4.3 Simple Network Queue Controller

The deterministic LQG steady state linear perturbation PI controller designed in

Section 3.4.2 is implemented in MATLAB. The simple OPNET model used to test the

controller design is shown in Figure 4.34. The two dashed lines are statistic lines that

report the queue size and queue arrival rate to the source. The source and queue models

are modi�ed versions of the standard OPNET models used in Section 4.1.1 and the sink

model remains unchanged. The queue model has been slightly modi�ed to record the arrival

rate to the queue. The source model has been modi�ed so that the sending rate is no longer

set by the user, but computed by the controller. Since the controller is implemented in

MATLAB, the source interacts with the controller through the co-simulation interface. The

constant gains Ḡ�
c =

h
�G�
c1

�G�
c2

i
and E are computed at the beginning of the simulation

given the setpoint yd and tuning parameters, X11, X22, X33, and U. The Riccati equation

given by Eq. (3.41) is solved using the discrete-time algebraic Riccati equation (DARE)

solver in MATLAB. Once the constant gains are calculated, the simple control law given by

Eq. (3.56) is executed in MATLAB. The controller calculates the packet send rate, based

on the queue size and queue arrival rate information. In this experiment, the Kalman �lter

is not used since the controller is given direct access to the state variables. The source

has an unlimited number of packets available to send. The packet sizes are exponentially

distributed with a mean size of 1500 bits.

Multiple simulations were conducted in which order of magnitude changes were made

to the tuning parameters to understand the e¤ect on the performance of the controller.

X11, X22, X33, and U were varied by orders of magnitude between 1 and 10000 resulting in

625 simulation runs. As stated in Section 3.4.2, the weights X11 and X22 correspond to the

importance of maintaining the states at the nominal values, the weight X33 corresponds to

the importance of minimizing the regulation error, and the weight U corresponds to the

importance of minimizing control action. The simulations were performed for 100 seconds

of simulated time with a queue service rate of 10000 bits/second. The setpoint was set to

the relatively low value of 3.125 packets. The setpoint was set purposely low as a challenge

to the controller, because small queue sizes are more di¢ cult to maintain accurately. A

small queue size is hard to maintain because the smallest deviation of one packet is a high

4-29

Figure 4.34 Simple controller model

percentage of the overall queue size. The ratio of U to X33 was found to be the most

important factor. It was observed that, in order to provide accurate control of the queue,

U must be multiple orders of magnitude larger than X33: The U to X33 ratio of 1000 was

found to provide adequate results. The controller was found to be fairly robust to changes

in X11 and X22.

Figures 4.35 - 4.38 display the results of the simple network queue controller un-

der di¤erent circumstances. In all of these graphs, a 30-run Monte Carlo analysis was

conducted. In these �gures, Graph (a) displays the queue arrival rate in packets/second,

which also corresponds to the output of the controller, Graph (b) displays the queue size

in packets, and Graph (c) displays the queue size in bits. The middle line is the mean and

the outside lines correspond to the mean plus or minus one standard deviation of the data

displayed.

Weights of X =

26664
1 0 0

0 1 0

0 0 1

37775 and U = 1000 resulting in Ḡ�
c =

h
:1064 :3842 :0248

i
were found to provide good results, as shown in Figure 4.35. The controller is able to

maintain the setpoint of 3.125 with a standard deviation of around 2.5 packets. The devi-

4-30

ations from the setpoint are due to the variability of the packet sizes, which the controller

is unable to respond perfectly.

In the second case, X22 was increased from 1 to 100, resulting in controller gain values

of Ḡ�
c =

h
:1041 :4415 :0236

i
. The controller�s robustness to change in this parameter

are seen in Figure 4.36. The results are very similar to the previous case. The steady state

performance remains virtually unchanged, with the only noticeable di¤erence being that

the rise time has been slightly increased.

The e¤ect of decreasing the U to X33 ratio is shown in Figure 4.37. The original

values of X =

26664
1 0 0

0 1 0

0 0 1

37775 are used, but U is decreased to 1, resulting in gain values of

Ḡ�
c =

h
:8880 :8936 :3262

i
. Since the cost associated with control inputs is decreased,

the controller tries to respond to high frequency variations in the queue size in a more

aggressive manner. This results in overcontrol and the deviations from the setpoint actually

increase. Since the negative variations are clipped by an empty queue size, the large positive

variations result in a average queue size that is approximately two packets larger than the

setpoint. Also, the positive standard deviation is increased to around 7 packets.

To show the e¤ect of changing the setpoint, the original weights X =

26664
1 0 0

0 1 0

0 0 1

37775 and
U = 1000 are used and yd is set to 53 packets, resulting in Ḡ�

c =
h
:1610 :4728 :0230

i
.

The result of increasing the setpoint is shown in Figure 4.38. The variance is actually

slightly greater than in Figure 4.35; however, the variance is a much smaller percentage of

the setpoint value. The sending rate computed by the controller in Graph (a) spikes as the

queue is �lled and then levels o¤, resulting in a smaller rise time. The controller correctly

responds to the nonlinear dynamics of the queue as highlighted by this experiment.

4-31

Figure 4.35 Simple network queue controller results, yd = 3:125; X11 = 1, X22 = 1, X33
= 1, and U = 1000, 30-run Monte Carlo analysis, black line: mean, gray
lines: mean plus or minus one standard deviation

4-32

Figure 4.36 Simple network queue controller results, yd = 3:125; X11 = 1, X22 = 100,
X33 = 1, and U = 1000, 30-run Monte Carlo analysis, black line: mean,
gray lines: mean plus or minus one standard deviation

4-33

Figure 4.37 Simple network queue controller results, yd = 3:125; X11 = 1, X22 = 1, X33
= 1, and U = 1, 30-run Monte Carlo analysis, black line: mean, gray lines:
mean plus or minus one standard deviation

4-34

Figure 4.38 Simple network queue controller results, yd = 53; X11 = 1, X22 = 1, X33 =
1, and U = 1000, 30-run Monte Carlo analysis, black line: mean, gray lines:
mean plus or minus one standard deviation

4-35

4.4 Summary

In this chapter, the transient queue model was veri�ed both in theoretical and realistic

environments. The network state estimator was shown to accurately estimate queue size

given noise corrupted measurements. It was also shown that, by changing the tuning of

the estimator, the low frequency behavior can also be estimated. The performance of the

network queue controller was investigated. The behaviors of a properly and improperly

tuned �lters were shown. The most important aspect of tuning the controller was found

to be the U to X33 ratio. Due to the large degree of randomness exhibited by the queue

size, this ratio must be su¢ ciently large to provide dampening and prevent over-control.

A properly tuned network queue controller was found to adequately regulate queue size to

the given setpoint.

4-36

V. Conclusions

5.1 Contributions

In this thesis, stochastic estimation and control theory was extended to computer

networks successfully. Due to the largely undeveloped nature of this �eld, much of this

document was devoted to developing the concepts and basic designs of the needed compo-

nents. Su¢ cient experiments were conducted to verify the validity of the designs.

A state space network model was adapted from the existing queueing theory equations

presented in Section 3.2. Faced with the task of modeling a computer network, the decision

was made to focus on queues, since they are the de�ning component of computer networks.

Existing developments in queueing theory were researched and the transient equations

describing a queue with an exponentially distributed service rate receiving Poisson tra¢ c

were used as the basis for the state space model [3, 6, 11,20].

In Section 4.1, the transient queue model was validated for multiple scenarios. The

model was �rst veri�ed under ideal conditions that exactly matched the input tra¢ c as-

sumptions made during the development of the model. The network queueing model was

then veri�ed by a more detailed network simulation that involved complex models of net-

work hardware operating under ideal tra¢ c situations. More realistic tra¢ c was simulated

to validate the queue model further. The model was found to be adequate in the non-

restrictive case in which tra¢ c can be approximated as Poisson or is a combination of

multiple sources.

A two-state extended Kalman �lter network estimator was developed in Section 3.4.1

using the state space transient queue model. The performance of the network estimator

was shown in Section 4.2. The network estimator provided accurate estimates of queue size

and packet arrival rate, given noise-corrupted measurements of queue size. The network

estimator predicted future behavior of the queue more accurately than other techniques

and estimated the low frequency behavior of the queue.

The network estimator was implemented in a realistic environment. A router was

modi�ed in a simulated network to provide measurements to the workstations sending data

through the queue. The extended Kalman �lter was inserted into a modi�ed workstation

5-1

model and provided estimates of the router�s queue size and packet arrival rate based on

the received measurements.

In Section 3.4.2, an LQG steady state linear perturbation PI controller was devel-

oped to calculate the sending rate needed to regulate queue sizes. The performance of

the controller was demonstrated in Section 4.3. The controller responded to the nonlin-

ear nature of the queue e¤ectively, resulting in an accurate regulation of queue size. The

network queue controller provides improved control when compared to the simplistic con-

gestion control algorithms presented in Section 2.4.2 that are used by TCP today. Since

the simplistic control algorithms used by TCP have only limited knowledge of the network,

the sending rate �uctuates undesirably as the simplistic control schemes struggle to send

data quickly without congesting the network, as seen in Figure 2.7. Due to limitations

in current transmission control schemes, congestion must be created before it can be de-

tected, resulting in less than optimal results. The network queue controller presented in

this document provides a great deal of �exibility and the queue size can be regulated to

meet the needs of the network.

5.2 Recommendations

This document laid the foundation to control a computer network using stochastic

estimation and control techniques. Numerous extensions to this work are needed in order

to produce a feasible real world design. This research has largely been a proof of concept

e¤ort and many implementation issues must still be considered.

The network simulation used to test the controller in Section 4.3 was very basic and

the controller needs to be tested in a more realistic situation similar to the network used

to test the estimator in Section 4.1.3. In the more realistic network, the performance of

the network controller should be compared to the performance of the existing transmission

control protocols described in Section 2.4.2. In the current controller design, a network

with only one queue is considered and the framework needs to be designed to expand the

existing design to multi-queue scenarios.

5-2

The network estimator needs more rigorous testing in multiple network scenarios.

Due to time constraints, investigation of the network estimator�s performance was limited

to a few network simulations. The e¤ect of multiple network con�gurations and various

tra¢ c conditions should be explored. Scalability investigations should be conducted to

study how much queue size measurement packets load the network as its size increases.

A study should be conducted to determine the optimal controller setpoint value in

various situations. The optimal setpoint value will vary depending on the goals of the

designer. If end-to-end delay is of utmost importance, small queue sizes are optimal, while

larger queue sizes would be desired if data throughput is of greatest concern.

Fairness of the network control scheme is a major factor than needs to be investigated.

When multiple TCP stream are utilizing one queue, it must be ensured that all streams are

given fair access and that one stream does not block others. A scheme must be developed

that allows controllers to coordinate among themselves to allocate the fair share of network

resources.

The basic concept of estimating computer network parameters stochastically should

be explored further. A particular issue was investigated in this document and a solution

was developed to demonstrate the bene�t of extending stochastic estimation techniques

to computer networks. There are numerous areas waiting to be explored in this �eld,

and the basic ideas developed in the document are not unique to the congestion control

issue explored here. Kalman �lter based estimators could be developed to estimate any

network parameter imaginable, to include network delay, bandwidth, utilization, bit error

rate, throughput, etc. Similarly, the use of stochastic controllers should not be limited to

the queue regulation scheme presented in this document. Feedback controllers based on

stochastic estimates could be used to control any aspect of network behavior, to include

routing and adaptive network recon�guration decisions.

5-3

Appendix A. Interfacing MATLAB with OPNET

A.1 Instructions

1. Ensure MATLAB is installed on the machine. The version used was R2006a.

2. Ensure MATLAB is registered as a COM server. Enter the following into the DOS

command window:

cd $MATLABnbinnwin32

matlab /regserver

where �$MATLAB� is the MATLAB root directory. The default MATLAB root

directory for R2006a is �C:nProgram FilesnMatLabnR2006a�

3. Ensure OPNET Modeler is installed on the machine. The version used was 12.0.

4. Since OPNET does not seem to like a path with spaces in it, you will need to copy the

MATLAB library �les to a path that does not have spaces. The �les you will need to

copy are �libmat.lib, libeng.lib, libmex.lib, and libmx.lib�. These �les are located at

�$MATLABnexternnlibnwin32nmicrosoft�. I copied the �les to �C:nmatlab_libs�.

5. You will need to copy the �les engine.h, tmwtypes.h, and matrix.h from

�$MATLABnexternninclude�to �$OPNETnmodelsnstdninclude�where �$OPNET�

is the OPNET root directory. The default OPNET root directory for version 12.0 is

�C:nProgram FilesnOPNETn12.0.A�.

6. Open OPNET. Once on the main screen click on �Edit�and then �Preferences�.

7. Maximize �Discrete Event Simulation�, maximize �Code Generation�, and then click

on �Linking�.

8. Add �libmat.lib libeng.lib libmex.lib libmx.lib�to the �Common Network Repository

Libraries��eld.

9. In the �Common Network Repositories Flags��eld, you will need to enter the path

for the library �les that were copied. In my case, �/LIBPATH:C:nmatlab_libs�was

entered into this �eld.

A-1

10. In your process model, you will need to place �#include "engine.h"� in the header

block.

11. You will use the engine API provided by MATLAB to call MATLAB from C. First

you will open a MATLAB engine through the �engOpen�command. The MX Array

data structure is used to pass information between C and MATLAB. The �engPut-

Variable� and �engGetVariable� commands are used either to pass an MX Array

to MATLAB or to receive an MX array from MATLAB. The �engEvalString�com-

mand is used to give MATLAB commands to the MATLAB engine. Finally, the

�engClose�command is used to close the MATLAB engine. A complete list of the

MATLAB Engine commands and MX Array Manipulation commands are included

in the MATLAB help �le.

12. The following example opens a MATLAB engine, creates a MX Array, passes it to

MATLAB, performs an operation on it, passes the MX Array back to C, and closes

the MATLAB engine.

A-2

A.2 Example Function

static void
matlab_example(void)
{

/* declare variables*/
Engine* ep;
char message[512];
mxArray* x;
double x_data = 2;
mxArray* y;
double* y_ptr;
double y_data[2*1] = {3,4};
mxArray* z;
double z_data[2*1];
double* z_ptr;

FIN (matlab_example(void));
/* Open Matlab engine. If engine doesn�t open display error message. */
if (!(ep = engOpen(NULL)))

{
sprintf(message, "nnCan�t start MATLAB enginenn");
op_prg_odb_print_major(message, OPC_NIL);
}

/* Create a mx scalar array and pass it to MATLAB */
x = mxCreateDoubleScalar(x_data);
engPutVariable(ep, "x", x);
mxDestroyArray(x);
/* Create a mx matrix array and pass it to MATLAB */
y = mxCreateDoubleMatrix(2,2,mxREAL);
y_ptr = mxGetPr(y);
memcpy(y_ptr, y_data, 2*1*sizeof(double));
engPutVariable(ep, "y", y);
mxDestroyArray(y);
/* multiply two arrays in MATLAB*/
engEvalString(ep, "z = x * y");
/* Receive the result from MATLAB */
z = engGetVariable(ep, "z");
z_ptr = mxGetPr(z);
memcpy(z_data, z_ptr, 2*1*sizeof(double));
mxDestroyArray(z);
/* close the MATLAB engine */
engClose(ep);
/* Display the answer */

A-3

sprintf(message, "z1 = %f and z2 = %f", z_data[0], z_data[1]);
op_prg_odb_print_major(message, OPC_NIL);

FOUT;
}

A-4

Bibliography

1. Anjali, Tricha, et al. �New MPLS Network Management Techniques Based on Adap-
tive Learning,�IEEE Transactions on Neural Networks, 16 (5):1242�1255 (September
2005).

2. BAE Systems, http://www.eis.na.baesystems.com/nes/products, February 2007.

3. Bailey, N. T. J. �A Continuous Time Treatment of a Single Queue Using Generating
Functions,�Journal of the Royal Statistical Society , 16 :288�291 (1954).

4. Bletsas, Aggelos. �Evaluation of Kalman Filtering for Network Time Keeping,�IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 52 (9):1452�1460
(September 2005).

5. Brakmo, Lawrence S. and Larry L. Peterson. �TCP Vegas: End to End Congestion
Avoidance on a Global Internet,�IEEE Journal on Selected Areas in Communications,
13 (8):1465�1480 (October 1995).

6. Cantrell, P. E. �Computation of the Transient M/M/1 Queue Cdf, Pdf, and Mean with
Generalized Q-Functions,�IEEE Trans. Communications, COM-34 :814�817 (August
1986).

7. Casetti, Claudio, et al. �TCP Westwood: End-to-End Congestion Control for
Wired/Wireless Networks,�Wireless Networks, 8 (5):467�479 (2002).

8. Castro, Rui, et al. �Network Tomography: Recent Developments,�Statistical Science,
19 (3):499�517 (2004).

9. Floyd, Sally. �TCP and Explicit Congestion Noti�cation,�ACM SIGCOMM Computer
Communication Review , 24 (5):10�23 (October 1994).

10. Grieco, Luigi A. and Saverio Mascolo. �Performance Evaluation and Comparison
of Westwood+, New Reno, and Vegas TCP Congestion Control,�ACM SIGCOMM
Computer Communications Review , 34 (2):25�38 (April 2004).

11. Gross, D. and C. M. Harris. Fundamentals of Queueing Theory (3rd Edition). New
York: Wiley-Interscience, 1998.

12. Karagiannis, T., et al. �A Nonstationary Poisson View of Internet Tra¢ c,�INFOCOM
2004. Twenty-Third Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, 3 :1558�1569 (7-11 March 2004).

13. Kurose, James F. and Keith W. Ross. Computer Networking: A Top-Down Approach
Featuring the Internet (3rd Edition). Boston: Pearson /Addison Wesley, 2005.

14. Li, Shupeng and Nirwan Ansari. �TCP-Jersey over High Speed Downlink Packet
Access,�IEEE Globecom 2005 , 6 :3576�3580 (2005).

15. Mascolo, Saverio, et al. �TCP Westwood: Bandwidth Estimation for Enhanced Trans-
port over Wireless Links,�MobiCom �01: Proceedings of the 7th annual international
conference on Mobile computing and networking , 287�297 (2001).

BIB-1

16. Maybeck, P. S. Stochastic Models, Estimation, and Control, I . New York: Academic
Press, Inc, 1979. Republished, Arlington, VA: Navtech, 1994.

17. Maybeck, P. S. Stochastic Models, Estimation, and Control, II . New York: Academic
Press, Inc, 1982. Republished, Arlington, VA: Navtech, 1994.

18. Maybeck, P. S. Stochastic Models, Estimation, and Control, III . New York: Academic
Press, Inc, 1982. Republished, Arlington, VA: Navtech, 1994.

19. OPNET website, http://www.opnet.com, Jan 2007.

20. Robertazzi, T. G. Computer Networks and Systems (3rd Edition). New York: Springer,
2000.

21. Song, Ci, et al. �A Link Adaptation Approach for QoS Enhancement in Wireless
Networks,�IEEE Conference on Local Computer Networks (LCN), 373 (2001).

22. Soule, Augustin, et al. �Tra¢ c Matrix Tracking Using Kalman Filters,�SIGMETRICS
Performance Evaluation Review , 33 (3):24�31 (2005).

23. Stallings, W. High-Speed Networks and Internets (2nd Edition). Upper Saddle River,
New Jersey: Prentice-Hall, Inc., 2002.

24. Stevens, W. Richard and Gary R. Wright. TCP/IP Illustrated , 1-3 . Reading, Mass:
Addison - Wesley, 1994-1996.

25. The Mathworks - MATLAB and Simulink for Technical Computing,
http://www.mathworks.com, Jan 2007.

26. Xu, Kai, et al. �TCP-Jersey for Wireless IP Communications,� IEEE Journal on
Selected Areas in Communications, 22 (4):747�756 (May 2004).

BIB-2

Vita

Nathan Stuckey is a student at the Air Force Institute of Technology, pursuing a

Masters Degree/Electrical Engineering. His studies are in Stochastic Estimation and Con-

trol and Computer Networking. Captain Stuckey will graduate from AFIT in March 2007.

Upon graduation, he will be assigned to Eglin AFB, 46th Test SQ. He completed his Bach-

elor�s Degree in Electrical Engineering at Purdue University in 2002. He is a member of

Tau Beta Pi and Eta Kappa Nu.

VITA-1

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

	Abstract
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Introduction
	Network Tomography
	Network Tomography Background
	Kalman Filter Based Network Tomography Examples

	Background TCP
	Congestion Control with Lossy Data Links
	Congestion Control Issue
	TCP Modifications

	Summary

	Methodology
	Introduction
	Model Development
	Estimation and Control Theory
	Extended Kalman Filter Theory
	Nonlinear Stochastic Controller Theory

	Design of Network Estimator and Controller
	Design of Network State Estimator
	Design of Network Queue Controller

	Summary

	Results
	Model Validation
	Simple Queue Results
	Detailed Network Model with Ideal Traffic
	Mixed Traffic
	Model Validation Summary

	Network Estimator Performance
	Extended Kalman Filter Validation
	Integrated Network Estimator

	Simple Network Queue Controller
	Summary

	Conclusions
	Contributions
	Recommendations

	Interfacing MATLAB with OPNET
	Instructions
	Example Function

	Bibliography
	Vita

	1_REPORT_DATE_DDMMYYYY: 22-03-2007
	2_REPORT_TYPE: Master's Thesis
	3_DATES_COVERED_From__To: Aug 2005 - March 07
	4_TITLE_AND_SUBTITLE: STOCHASTIC ESTIMATION AND CONTROL OF QUEUES WITHIN A COMPUTER NETWORK
	5a_CONTRACT_NUMBER:
	5b_GRANT_NUMBER:
	5c_PROGRAM_ELEMENT_NUMBER:
	5d_PROJECT_NUMBER:
	5e_TASK_NUMBER:
	5f_WORK_UNIT_NUMBER:
	6_AUTHORS: Stuckey, Nathan, C., Captain, USAF
	7_PERFORMING_ORGANIZATION: Air Force Institute of TechnologyGraduate School of Engineering and Management (AFIT/EN)2950 Hobson Way (Bldg 640)WPAFB OH 45433-7765
	8_PERFORMING_ORGANIZATION: AFIT/GE/ENG/07-24
	9_SPONSORINGMONITORING_AG: Air Force Office of Scientific ResearchDr. David R. Luginbuhl 875 N. Randolph Street Arlington, VA 22203-1768(703) 696-6207, email: david.luginbuhl@afosr.af.mil
	10_SPONSORMONITORS_ACRONY:
	1_1_SPONSORMONITORS_REPOR:
	12_DISTRIBUTIONAVAILABILI: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
	13_SUPPLEMENTARY_NOTES:
	14ABSTRACT: An extended Kalman filter is used to estimate size and packet arrival rate of network queues. These estimates are used by a LQG steady state linear perturbation PI controller to regulate queue size within a computer network. This paper presents the derivation of the transient queue behavior for a system with Poisson traffic and exponential service times. This result is then validated for ideal traffic using a network simulated in OPNET. A more complex OPNET model is then used to test the adequacy of the transient queue size model when non-Poisson traffic is combined. The extended Kalman filter theory is presented and a network state estimator is designed using the transient queue behavior model. The equations needed for the LQG synthesis of a steady state linear perturbation PI controller are presented. These equations are used to develop a network queue controller based on the transient queue model. The performance of the network state estimator and network queue controller was investigated and shown to provide improved control when compared to other simplistic control algorithms.
	15_SUBJECT_TERMS: Stochastic estimation, Stochastic control, Kalman filter, LQG, Computer networks, Queue, TCP, Congestion control, Network Tomography, Markov chains,
	a_REPORT: U
	bABSTRACT: U
	c_THIS_PAGE: U
	17_limitation_of_abstract: UU
	number_of_pages: 95
	19a_NAME_OF_RESPONSIBLE_P: Juan Vasquez, Lt Col, USAF (ENG)
	19b_TELEPHONE_NUMBER_Incl: 937-255-3636 x7231; email Juan.Vasquez@afit.edu
	Reset:

